Matches in SemOpenAlex for { <https://semopenalex.org/work/W2061823977> ?p ?o ?g. }
- W2061823977 endingPage "70" @default.
- W2061823977 startingPage "57" @default.
- W2061823977 abstract "The uptake of atmospheric carbon dioxide (CO2) into the mid-latitudes of the North Atlantic Ocean through the production of wintertime Sub-Tropical Mode Water (STMW) also known as Eighteen Degree Water (EDW) is poorly quantified and constrained. Nonetheless, it has been proposed that the EDW could serve as an important short-term sink of anthropogenic CO2. The objective of the present investigation was to determine sea–air CO2 gas exchange rates and seawater CO2 dynamics during wintertime formation of EDW in the North Atlantic Ocean. During 2006 and 2007, several research cruises were undertaken as part of the CLIMODE project across the northwest Atlantic Ocean with the intent to study the pre-conditioning, formation, and the evolution of EDW. Sea–air CO2 exchange rates were calculated based on measurements of atmospheric pCO2, surface seawater pCO2 and wind speed with positive values denoting a net flux from the surface ocean to the atmosphere. Average sea–air CO2 flux calculated along cruise tracks in the formation region equaled −18±6 mmol CO2 m−2 d−1 and −14±9 mmol CO2 m−2 d−1 in January of 2006 and March of 2007, respectively. Average sea–air CO2 flux in newly formed outcropping EDW in February and March of 2007 equaled −28±10 mmol CO2 m−2 d−1. These estimates exceeded previous flux estimates in this region by 40–185%. The magnitude of CO2 flux was mainly controlled by the observed variability in wind speed and ΔpCO2 with smaller changes owing to variability in sea surface temperature. Small but statistically significant difference (4.1±2.6 μmol kg−1) in dissolved inorganic carbon (DIC) was observed in two occurrences of newly formed EDW in February and March of 2007. This difference was explained either by differences in the relative contribution from different water masses involved in the initial formation process of EDW or temporal changes owing to sea–air CO2 exchange (∼25%) and vertical and/or lateral mixing (∼75%) with water masses high in DIC from the cold side of the Gulf Stream and/or from below the permanent thermocline. Based on the present estimate of sea–air CO2 flux in newly formed EDW and a formation rate of 9.3 Sv y (Sverdrup year=106 m3 s−1 flow sustained for 1 year), CO2 uptake by newly formed EDW may constitute 3–6% of the total North Atlantic CO2 sink. However, advection of surface waters that carry an elevated burden of anthropogenic CO2 that are transported to the formation region and transformed to mode water may contribute additional CO2 to the total net uptake and sequestration of anthropogenic CO2 to the ocean interior." @default.
- W2061823977 created "2016-06-24" @default.
- W2061823977 creator A5019762083 @default.
- W2061823977 creator A5025185105 @default.
- W2061823977 creator A5041217929 @default.
- W2061823977 creator A5055650310 @default.
- W2061823977 date "2013-07-01" @default.
- W2061823977 modified "2023-10-18" @default.
- W2061823977 title "Sea–air CO2 flux in the North Atlantic subtropical gyre: Role and influence of Sub-Tropical Mode Water formation" @default.
- W2061823977 cites W1576815048 @default.
- W2061823977 cites W1608720283 @default.
- W2061823977 cites W1678157725 @default.
- W2061823977 cites W1709753542 @default.
- W2061823977 cites W1775773741 @default.
- W2061823977 cites W1966398280 @default.
- W2061823977 cites W1969184914 @default.
- W2061823977 cites W1978190888 @default.
- W2061823977 cites W1983275003 @default.
- W2061823977 cites W1995625122 @default.
- W2061823977 cites W2003942649 @default.
- W2061823977 cites W2007311403 @default.
- W2061823977 cites W2007849811 @default.
- W2061823977 cites W2009163215 @default.
- W2061823977 cites W2013554446 @default.
- W2061823977 cites W2018516735 @default.
- W2061823977 cites W2028063827 @default.
- W2061823977 cites W2030604405 @default.
- W2061823977 cites W2032699884 @default.
- W2061823977 cites W2052989259 @default.
- W2061823977 cites W2053147559 @default.
- W2061823977 cites W2053867554 @default.
- W2061823977 cites W2061112770 @default.
- W2061823977 cites W2061899589 @default.
- W2061823977 cites W2063534846 @default.
- W2061823977 cites W2067828354 @default.
- W2061823977 cites W2088825209 @default.
- W2061823977 cites W2090220130 @default.
- W2061823977 cites W2094300388 @default.
- W2061823977 cites W2096651553 @default.
- W2061823977 cites W2101167483 @default.
- W2061823977 cites W2111549347 @default.
- W2061823977 cites W2112435983 @default.
- W2061823977 cites W2125776675 @default.
- W2061823977 cites W2130378296 @default.
- W2061823977 cites W2175863575 @default.
- W2061823977 cites W2912370053 @default.
- W2061823977 doi "https://doi.org/10.1016/j.dsr2.2013.02.022" @default.
- W2061823977 hasPublicationYear "2013" @default.
- W2061823977 type Work @default.
- W2061823977 sameAs 2061823977 @default.
- W2061823977 citedByCount "8" @default.
- W2061823977 countsByYear W20618239772012 @default.
- W2061823977 countsByYear W20618239772015 @default.
- W2061823977 countsByYear W20618239772016 @default.
- W2061823977 countsByYear W20618239772019 @default.
- W2061823977 countsByYear W20618239772020 @default.
- W2061823977 countsByYear W20618239772022 @default.
- W2061823977 countsByYear W20618239772023 @default.
- W2061823977 crossrefType "journal-article" @default.
- W2061823977 hasAuthorship W2061823977A5019762083 @default.
- W2061823977 hasAuthorship W2061823977A5025185105 @default.
- W2061823977 hasAuthorship W2061823977A5041217929 @default.
- W2061823977 hasAuthorship W2061823977A5055650310 @default.
- W2061823977 hasConcept C111368507 @default.
- W2061823977 hasConcept C127313418 @default.
- W2061823977 hasConcept C140302290 @default.
- W2061823977 hasConcept C14168384 @default.
- W2061823977 hasConcept C143050476 @default.
- W2061823977 hasConcept C153294291 @default.
- W2061823977 hasConcept C178790620 @default.
- W2061823977 hasConcept C185592680 @default.
- W2061823977 hasConcept C197248824 @default.
- W2061823977 hasConcept C205649164 @default.
- W2061823977 hasConcept C2776632717 @default.
- W2061823977 hasConcept C30380174 @default.
- W2061823977 hasConcept C39432304 @default.
- W2061823977 hasConcept C49204034 @default.
- W2061823977 hasConcept C505870484 @default.
- W2061823977 hasConcept C530467964 @default.
- W2061823977 hasConcept C58640448 @default.
- W2061823977 hasConcept C65440619 @default.
- W2061823977 hasConcept C68709404 @default.
- W2061823977 hasConcept C86803240 @default.
- W2061823977 hasConcept C91586092 @default.
- W2061823977 hasConceptScore W2061823977C111368507 @default.
- W2061823977 hasConceptScore W2061823977C127313418 @default.
- W2061823977 hasConceptScore W2061823977C140302290 @default.
- W2061823977 hasConceptScore W2061823977C14168384 @default.
- W2061823977 hasConceptScore W2061823977C143050476 @default.
- W2061823977 hasConceptScore W2061823977C153294291 @default.
- W2061823977 hasConceptScore W2061823977C178790620 @default.
- W2061823977 hasConceptScore W2061823977C185592680 @default.
- W2061823977 hasConceptScore W2061823977C197248824 @default.
- W2061823977 hasConceptScore W2061823977C205649164 @default.
- W2061823977 hasConceptScore W2061823977C2776632717 @default.
- W2061823977 hasConceptScore W2061823977C30380174 @default.
- W2061823977 hasConceptScore W2061823977C39432304 @default.
- W2061823977 hasConceptScore W2061823977C49204034 @default.