Matches in SemOpenAlex for { <https://semopenalex.org/work/W2062051372> ?p ?o ?g. }
- W2062051372 endingPage "936" @default.
- W2062051372 startingPage "921" @default.
- W2062051372 abstract "Label Ranking (LR) problems are becoming increasingly important in Machine Learning. While there has been a significant amount of work on the development of learning algorithms for LR in recent years, there are not many pre-processing methods for LR. Some methods, like Naive Bayes for LR and APRIORI-LR, cannot handle real-valued data directly. Conventional discretization methods used in classification are not suitable for LR problems, due to the different target variable. In this work, we make an extensive analysis of the existing methods using simple approaches. We also propose a new method called EDiRa (Entropy-based Discretization for Ranking) for the discretization of ranking data. We illustrate the advantages of the method using synthetic data and also on several benchmark datasets. The results clearly indicate that the discretization is performing as expected and also improves the results and efficiency of the learning algorithms." @default.
- W2062051372 created "2016-06-24" @default.
- W2062051372 creator A5049432986 @default.
- W2062051372 creator A5058183984 @default.
- W2062051372 creator A5062278926 @default.
- W2062051372 date "2016-02-01" @default.
- W2062051372 modified "2023-09-27" @default.
- W2062051372 title "Entropy-based discretization methods for ranking data" @default.
- W2062051372 cites W133880778 @default.
- W2062051372 cites W1496283916 @default.
- W2062051372 cites W1607030160 @default.
- W2062051372 cites W1678889691 @default.
- W2062051372 cites W1993837825 @default.
- W2062051372 cites W2000409585 @default.
- W2062051372 cites W203454714 @default.
- W2062051372 cites W2045487373 @default.
- W2062051372 cites W2051893411 @default.
- W2062051372 cites W2056656636 @default.
- W2062051372 cites W2078483536 @default.
- W2062051372 cites W2085247959 @default.
- W2062051372 cites W2087976018 @default.
- W2062051372 cites W2091886223 @default.
- W2062051372 cites W2097569937 @default.
- W2062051372 cites W2097994458 @default.
- W2062051372 cites W2102705755 @default.
- W2062051372 cites W2107853397 @default.
- W2062051372 cites W2122467302 @default.
- W2062051372 doi "https://doi.org/10.1016/j.ins.2015.04.022" @default.
- W2062051372 hasPublicationYear "2016" @default.
- W2062051372 type Work @default.
- W2062051372 sameAs 2062051372 @default.
- W2062051372 citedByCount "43" @default.
- W2062051372 countsByYear W20620513722015 @default.
- W2062051372 countsByYear W20620513722016 @default.
- W2062051372 countsByYear W20620513722017 @default.
- W2062051372 countsByYear W20620513722018 @default.
- W2062051372 countsByYear W20620513722019 @default.
- W2062051372 countsByYear W20620513722020 @default.
- W2062051372 countsByYear W20620513722021 @default.
- W2062051372 countsByYear W20620513722022 @default.
- W2062051372 countsByYear W20620513722023 @default.
- W2062051372 crossrefType "journal-article" @default.
- W2062051372 hasAuthorship W2062051372A5049432986 @default.
- W2062051372 hasAuthorship W2062051372A5058183984 @default.
- W2062051372 hasAuthorship W2062051372A5062278926 @default.
- W2062051372 hasBestOaLocation W20620513722 @default.
- W2062051372 hasConcept C105427703 @default.
- W2062051372 hasConcept C106301342 @default.
- W2062051372 hasConcept C111472728 @default.
- W2062051372 hasConcept C119857082 @default.
- W2062051372 hasConcept C121332964 @default.
- W2062051372 hasConcept C12267149 @default.
- W2062051372 hasConcept C124101348 @default.
- W2062051372 hasConcept C126148662 @default.
- W2062051372 hasConcept C13280743 @default.
- W2062051372 hasConcept C134306372 @default.
- W2062051372 hasConcept C138885662 @default.
- W2062051372 hasConcept C154945302 @default.
- W2062051372 hasConcept C185798385 @default.
- W2062051372 hasConcept C189430467 @default.
- W2062051372 hasConcept C205649164 @default.
- W2062051372 hasConcept C33923547 @default.
- W2062051372 hasConcept C41008148 @default.
- W2062051372 hasConcept C52001869 @default.
- W2062051372 hasConcept C62520636 @default.
- W2062051372 hasConcept C73000952 @default.
- W2062051372 hasConcept C75553542 @default.
- W2062051372 hasConceptScore W2062051372C105427703 @default.
- W2062051372 hasConceptScore W2062051372C106301342 @default.
- W2062051372 hasConceptScore W2062051372C111472728 @default.
- W2062051372 hasConceptScore W2062051372C119857082 @default.
- W2062051372 hasConceptScore W2062051372C121332964 @default.
- W2062051372 hasConceptScore W2062051372C12267149 @default.
- W2062051372 hasConceptScore W2062051372C124101348 @default.
- W2062051372 hasConceptScore W2062051372C126148662 @default.
- W2062051372 hasConceptScore W2062051372C13280743 @default.
- W2062051372 hasConceptScore W2062051372C134306372 @default.
- W2062051372 hasConceptScore W2062051372C138885662 @default.
- W2062051372 hasConceptScore W2062051372C154945302 @default.
- W2062051372 hasConceptScore W2062051372C185798385 @default.
- W2062051372 hasConceptScore W2062051372C189430467 @default.
- W2062051372 hasConceptScore W2062051372C205649164 @default.
- W2062051372 hasConceptScore W2062051372C33923547 @default.
- W2062051372 hasConceptScore W2062051372C41008148 @default.
- W2062051372 hasConceptScore W2062051372C52001869 @default.
- W2062051372 hasConceptScore W2062051372C62520636 @default.
- W2062051372 hasConceptScore W2062051372C73000952 @default.
- W2062051372 hasConceptScore W2062051372C75553542 @default.
- W2062051372 hasLocation W20620513721 @default.
- W2062051372 hasLocation W20620513722 @default.
- W2062051372 hasOpenAccess W2062051372 @default.
- W2062051372 hasPrimaryLocation W20620513721 @default.
- W2062051372 hasRelatedWork W1991228124 @default.
- W2062051372 hasRelatedWork W2078661309 @default.
- W2062051372 hasRelatedWork W2130167126 @default.
- W2062051372 hasRelatedWork W2348794337 @default.
- W2062051372 hasRelatedWork W2424157389 @default.
- W2062051372 hasRelatedWork W2550120957 @default.