Matches in SemOpenAlex for { <https://semopenalex.org/work/W2062061207> ?p ?o ?g. }
- W2062061207 endingPage "3124" @default.
- W2062061207 startingPage "3093" @default.
- W2062061207 abstract "The role of tunneling for two proton-transfer steps in the reactions catalyzed by triosephosphate isomerase (TIM) has been studied. One step is the rate-limiting proton transfer from Cα in the substrate to Glu 165, and the other is an intrasubstrate proton transfer proposed for the isomerization of the enediolate intermediate. The latter, which is not important in the wild-type enzyme but is a useful model system because of its simplicity, has also been examined in the gas phase and in solution. Variational transition-state theory with semiclassical ground-state tunneling was used for the calculation with potential energy surface determined by an AM1 method specifically parametrized for the TIM system. The effect of tunneling on the reaction rate was found to be less than a factor of 10 at room temperature; the tunneling becomes more important at lower temperature, as expected. The imaginary frequency (barrier) mode and modes that have large contributions to the reaction path curvature are localized on the atoms in the active site, within 4 Å of the substrate. This suggests that only a small number of atoms that are close to the substrate and their motions (e.g., donor−acceptor vibration) directly determine the magnitude of tunneling. Atoms that are farther away influence the effect of tunneling indirectly by modulating the energetics of the proton transfer. For the intramolecular proton transfer, tunneling was found to be most important in the gas phase, to be similar in the enzyme, and to be the smallest in water. The major reason for this trend is that the barrier frequency is substantially lower in solution than in the gas phase and enzyme; the broader solution barrier is caused by the strong electrostatic interaction between the highly charged solute and the polar solvent molecules. Analysis of isotope effects showed that the conventional Arrenhius parameters are more useful as experimental criteria for determining the magnitude of tunneling than the widely used Swain−Schaad exponent (SSE). For the primary SSE, although values larger than the transition-state theory limit (3.3) occur when tunneling is included, there is no clear relationship between the calculated magnitudes of tunneling and the SSE. Also, the temperature dependence of the primary SSE is rather complex; the value of SSE tends to decrease as the temperature is lowered (i.e., when tunneling becomes more significant). For the secondary SSE, the results suggest that it is more relevant for evaluating the “coupled motion” between the secondary hydrogen and the reaction coordinate than the magnitude of tunneling. Although tunneling makes a significant contribution to the rate of proton transfer, it appears not to be a major aspect of the catalysis by TIM at room temperature; i.e., the tunneling factor of 10 is “small” relative to the overall rate acceleration by 109. For the intramolecular proton transfer, the tunneling in the enzyme is larger by a factor of 5 than in solution." @default.
- W2062061207 created "2016-06-24" @default.
- W2062061207 creator A5036789652 @default.
- W2062061207 creator A5076499540 @default.
- W2062061207 date "2002-02-23" @default.
- W2062061207 modified "2023-10-11" @default.
- W2062061207 title "Quantum Mechanics/Molecular Mechanics Studies of Triosephosphate Isomerase-Catalyzed Reactions: Effect of Geometry and Tunneling on Proton-Transfer Rate Constants" @default.
- W2062061207 cites W133369315 @default.
- W2062061207 cites W1525870032 @default.
- W2062061207 cites W1563494356 @default.
- W2062061207 cites W1681177208 @default.
- W2062061207 cites W1963739311 @default.
- W2062061207 cites W1965088460 @default.
- W2062061207 cites W1966641048 @default.
- W2062061207 cites W1970125334 @default.
- W2062061207 cites W1970638471 @default.
- W2062061207 cites W1974147495 @default.
- W2062061207 cites W1976499671 @default.
- W2062061207 cites W1981484514 @default.
- W2062061207 cites W1982839983 @default.
- W2062061207 cites W1985251808 @default.
- W2062061207 cites W1985748667 @default.
- W2062061207 cites W1988443677 @default.
- W2062061207 cites W1988449405 @default.
- W2062061207 cites W1992485951 @default.
- W2062061207 cites W1993853668 @default.
- W2062061207 cites W1995391222 @default.
- W2062061207 cites W1998904893 @default.
- W2062061207 cites W1999444346 @default.
- W2062061207 cites W2007700073 @default.
- W2062061207 cites W2012887512 @default.
- W2062061207 cites W2014562537 @default.
- W2062061207 cites W2014767176 @default.
- W2062061207 cites W2016201075 @default.
- W2062061207 cites W2018403528 @default.
- W2062061207 cites W2018425793 @default.
- W2062061207 cites W2021361846 @default.
- W2062061207 cites W2022092718 @default.
- W2062061207 cites W2023271753 @default.
- W2062061207 cites W2024257418 @default.
- W2062061207 cites W2025128044 @default.
- W2062061207 cites W2025396755 @default.
- W2062061207 cites W2027261646 @default.
- W2062061207 cites W2027408247 @default.
- W2062061207 cites W2027815611 @default.
- W2062061207 cites W2028702957 @default.
- W2062061207 cites W2038127925 @default.
- W2062061207 cites W2043634337 @default.
- W2062061207 cites W2043838469 @default.
- W2062061207 cites W2044115606 @default.
- W2062061207 cites W2046286471 @default.
- W2062061207 cites W2046412723 @default.
- W2062061207 cites W2048801950 @default.
- W2062061207 cites W2051320909 @default.
- W2062061207 cites W2053895127 @default.
- W2062061207 cites W2058051390 @default.
- W2062061207 cites W2058363175 @default.
- W2062061207 cites W2059605663 @default.
- W2062061207 cites W2059980347 @default.
- W2062061207 cites W2060188684 @default.
- W2062061207 cites W2063060974 @default.
- W2062061207 cites W2065425385 @default.
- W2062061207 cites W2067557952 @default.
- W2062061207 cites W2068077887 @default.
- W2062061207 cites W2068287519 @default.
- W2062061207 cites W2073002099 @default.
- W2062061207 cites W2076299995 @default.
- W2062061207 cites W2079346455 @default.
- W2062061207 cites W2080122947 @default.
- W2062061207 cites W2081125798 @default.
- W2062061207 cites W2084119857 @default.
- W2062061207 cites W2086957099 @default.
- W2062061207 cites W2087123471 @default.
- W2062061207 cites W2089759714 @default.
- W2062061207 cites W2089876675 @default.
- W2062061207 cites W2091046938 @default.
- W2062061207 cites W2091237955 @default.
- W2062061207 cites W2091351739 @default.
- W2062061207 cites W2091769550 @default.
- W2062061207 cites W2094642658 @default.
- W2062061207 cites W2098077341 @default.
- W2062061207 cites W2106140689 @default.
- W2062061207 cites W2110043143 @default.
- W2062061207 cites W2112154906 @default.
- W2062061207 cites W2115676532 @default.
- W2062061207 cites W2117975185 @default.
- W2062061207 cites W2130021866 @default.
- W2062061207 cites W2130390906 @default.
- W2062061207 cites W2143981217 @default.
- W2062061207 cites W2144870776 @default.
- W2062061207 cites W2162166182 @default.
- W2062061207 cites W2329265014 @default.
- W2062061207 cites W2334128907 @default.
- W2062061207 cites W2905826917 @default.
- W2062061207 cites W4205752129 @default.
- W2062061207 cites W4292404993 @default.
- W2062061207 doi "https://doi.org/10.1021/ja0118439" @default.
- W2062061207 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11902900" @default.