Matches in SemOpenAlex for { <https://semopenalex.org/work/W2062244667> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2062244667 endingPage "831" @default.
- W2062244667 startingPage "831" @default.
- W2062244667 abstract "1. Let V be a partially ordered vector space with an order unit e. It is well known that the class 9W of maximal ideals of V is in one-one correspondence with the class K of normalized positive linear functionals, in the sense that to each MC9Y corresponds a positive linear functional Om with M as its null-space and with OkM(e) = 1. A maximal ideal MC9Y is said to be extreme if OM is an extreme point of the convex set K; i.e., if the equation OM = Oq$+(l -u)O2 with 4i, q2CK and 0< o<1 can hold only with 01=42=q$M. Kadison [2 ] has fully demonstrated the importance of the extreme maximal ideals in the theory of the representation of partially ordered vector spaces by function spaces. The main purpose of this article is to give a simple and direct characterization of the extreme maximal ideals in terms of the order structure in V. This characterization improves our understanding of the place of the extreme maximal ideals in the representation theory. For example, it becomes almost obvious that, if V is lattice ordered, then the extreme maximal ideals coincide with the lattice maximal ideals. We consider a class of ideals that we call ideals. Besides providing the required characterization of the extreme maximal ideals as perfect maximal ideals, perfect ideals are of interest in their own right. The class of all perfect ideals has the most important properties of the class of all ideals. In particular, if V has no perfect proper ideals other than (0), then V is isomorphic to R. The fundamental theorem on extreme points of convex sets of linear functionals is the KreinMilman existence theorem [3 ]. This theorem is shown to be a simple consequence of the fact that each perfect proper ideal is contained in a perfect maximal ideal. In fact, the Krein-Milman theorem is related to this property of perfect ideals in the same way that the Hahn-Banach theorem is related to the corresponding property of ideals in general." @default.
- W2062244667 created "2016-06-24" @default.
- W2062244667 creator A5040164942 @default.
- W2062244667 date "1956-05-01" @default.
- W2062244667 modified "2023-09-27" @default.
- W2062244667 title "Extreme maximal ideals of a partially ordered vector space" @default.
- W2062244667 cites W2016621079 @default.
- W2062244667 cites W2072718083 @default.
- W2062244667 cites W996908304 @default.
- W2062244667 doi "https://doi.org/10.1090/s0002-9939-1956-0080883-1" @default.
- W2062244667 hasPublicationYear "1956" @default.
- W2062244667 type Work @default.
- W2062244667 sameAs 2062244667 @default.
- W2062244667 citedByCount "11" @default.
- W2062244667 countsByYear W20622446672013 @default.
- W2062244667 countsByYear W20622446672014 @default.
- W2062244667 crossrefType "journal-article" @default.
- W2062244667 hasAuthorship W2062244667A5040164942 @default.
- W2062244667 hasBestOaLocation W20622446671 @default.
- W2062244667 hasConcept C104317684 @default.
- W2062244667 hasConcept C111919701 @default.
- W2062244667 hasConcept C113837420 @default.
- W2062244667 hasConcept C114614502 @default.
- W2062244667 hasConcept C202444582 @default.
- W2062244667 hasConcept C2778572836 @default.
- W2062244667 hasConcept C33923547 @default.
- W2062244667 hasConcept C40767141 @default.
- W2062244667 hasConcept C41008148 @default.
- W2062244667 hasConcept C54355233 @default.
- W2062244667 hasConcept C55112680 @default.
- W2062244667 hasConcept C6183050 @default.
- W2062244667 hasConcept C86803240 @default.
- W2062244667 hasConcept C92087593 @default.
- W2062244667 hasConceptScore W2062244667C104317684 @default.
- W2062244667 hasConceptScore W2062244667C111919701 @default.
- W2062244667 hasConceptScore W2062244667C113837420 @default.
- W2062244667 hasConceptScore W2062244667C114614502 @default.
- W2062244667 hasConceptScore W2062244667C202444582 @default.
- W2062244667 hasConceptScore W2062244667C2778572836 @default.
- W2062244667 hasConceptScore W2062244667C33923547 @default.
- W2062244667 hasConceptScore W2062244667C40767141 @default.
- W2062244667 hasConceptScore W2062244667C41008148 @default.
- W2062244667 hasConceptScore W2062244667C54355233 @default.
- W2062244667 hasConceptScore W2062244667C55112680 @default.
- W2062244667 hasConceptScore W2062244667C6183050 @default.
- W2062244667 hasConceptScore W2062244667C86803240 @default.
- W2062244667 hasConceptScore W2062244667C92087593 @default.
- W2062244667 hasIssue "5" @default.
- W2062244667 hasLocation W20622446671 @default.
- W2062244667 hasOpenAccess W2062244667 @default.
- W2062244667 hasPrimaryLocation W20622446671 @default.
- W2062244667 hasRelatedWork W1978042415 @default.
- W2062244667 hasRelatedWork W1979843330 @default.
- W2062244667 hasRelatedWork W1989920940 @default.
- W2062244667 hasRelatedWork W2096753949 @default.
- W2062244667 hasRelatedWork W2260035625 @default.
- W2062244667 hasRelatedWork W2963103437 @default.
- W2062244667 hasRelatedWork W2964072617 @default.
- W2062244667 hasRelatedWork W2964292522 @default.
- W2062244667 hasRelatedWork W2976797620 @default.
- W2062244667 hasRelatedWork W3103780039 @default.
- W2062244667 hasVolume "7" @default.
- W2062244667 isParatext "false" @default.
- W2062244667 isRetracted "false" @default.
- W2062244667 magId "2062244667" @default.
- W2062244667 workType "article" @default.