Matches in SemOpenAlex for { <https://semopenalex.org/work/W2062271656> ?p ?o ?g. }
- W2062271656 endingPage "127" @default.
- W2062271656 startingPage "98" @default.
- W2062271656 abstract "In this paper, a two-stage method for segmenting blurry images in the presence of Poisson or multiplicative Gamma noise is proposed. The method is inspired by a previous work on two-stage segmentation and the usage of an I-divergence term to handle the noise. The first stage of our method is to find a smooth solution $u$ to a convex variant of the Mumford--Shah model where the $ell_2$ data-fidelity term is replaced by an I-divergence term. A primal-dual algorithm is adopted to efficiently solve the minimization problem. We prove the convergence of the algorithm and the uniqueness of the solution $u$. Once $u$ is obtained, in the second stage, the segmentation is done by thresholding $u$ into different phases. The thresholds can be given by the users or can be obtained automatically by using any clustering method. In our method, we can obtain any $K$-phase segmentation ($Kgeq 2$) by choosing $(K-1)$ thresholds after $u$ is found. Changing $K$ or the thresholds does not require $u$ to be recomputed. Experimental results show that our two-stage method performs better than many standard two-phase or multiphase segmentation methods for very general images, including antimass, tubular, magnetic resonance imaging, and low-light images." @default.
- W2062271656 created "2016-06-24" @default.
- W2062271656 creator A5004126693 @default.
- W2062271656 creator A5021574704 @default.
- W2062271656 creator A5059443966 @default.
- W2062271656 date "2014-01-01" @default.
- W2062271656 modified "2023-10-01" @default.
- W2062271656 title "A Two-Stage Image Segmentation Method for Blurry Images with Poisson or Multiplicative Gamma Noise" @default.
- W2062271656 cites W1968309215 @default.
- W2062271656 cites W1977556410 @default.
- W2062271656 cites W1985349496 @default.
- W2062271656 cites W1985588167 @default.
- W2062271656 cites W1986850130 @default.
- W2062271656 cites W1991139668 @default.
- W2062271656 cites W1992719146 @default.
- W2062271656 cites W1998339281 @default.
- W2062271656 cites W1998683784 @default.
- W2062271656 cites W2000396646 @default.
- W2062271656 cites W2001806704 @default.
- W2062271656 cites W2003063671 @default.
- W2062271656 cites W2004260841 @default.
- W2062271656 cites W2006919211 @default.
- W2062271656 cites W2008794074 @default.
- W2062271656 cites W2010825468 @default.
- W2062271656 cites W2010840867 @default.
- W2062271656 cites W2011083450 @default.
- W2062271656 cites W2011516671 @default.
- W2062271656 cites W2021262032 @default.
- W2062271656 cites W2026269844 @default.
- W2062271656 cites W2038495454 @default.
- W2062271656 cites W2042597321 @default.
- W2062271656 cites W2049607297 @default.
- W2062271656 cites W2065267700 @default.
- W2062271656 cites W2071005004 @default.
- W2062271656 cites W2090390875 @default.
- W2062271656 cites W2092663520 @default.
- W2062271656 cites W2100533333 @default.
- W2062271656 cites W2103559027 @default.
- W2062271656 cites W2105125008 @default.
- W2062271656 cites W2110264793 @default.
- W2062271656 cites W2113726946 @default.
- W2062271656 cites W2114487471 @default.
- W2062271656 cites W2116040950 @default.
- W2062271656 cites W2121927366 @default.
- W2062271656 cites W2122890444 @default.
- W2062271656 cites W2140843581 @default.
- W2062271656 cites W2142058898 @default.
- W2062271656 cites W2143015120 @default.
- W2062271656 cites W2144751639 @default.
- W2062271656 cites W2148395215 @default.
- W2062271656 cites W2155280009 @default.
- W2062271656 cites W2159152281 @default.
- W2062271656 cites W2161160262 @default.
- W2062271656 cites W2165734775 @default.
- W2062271656 cites W2172029033 @default.
- W2062271656 cites W3121742466 @default.
- W2062271656 cites W4256051666 @default.
- W2062271656 cites W4292363360 @default.
- W2062271656 doi "https://doi.org/10.1137/130920241" @default.
- W2062271656 hasPublicationYear "2014" @default.
- W2062271656 type Work @default.
- W2062271656 sameAs 2062271656 @default.
- W2062271656 citedByCount "62" @default.
- W2062271656 countsByYear W20622716562014 @default.
- W2062271656 countsByYear W20622716562015 @default.
- W2062271656 countsByYear W20622716562016 @default.
- W2062271656 countsByYear W20622716562017 @default.
- W2062271656 countsByYear W20622716562018 @default.
- W2062271656 countsByYear W20622716562019 @default.
- W2062271656 countsByYear W20622716562020 @default.
- W2062271656 countsByYear W20622716562021 @default.
- W2062271656 countsByYear W20622716562022 @default.
- W2062271656 countsByYear W20622716562023 @default.
- W2062271656 crossrefType "journal-article" @default.
- W2062271656 hasAuthorship W2062271656A5004126693 @default.
- W2062271656 hasAuthorship W2062271656A5021574704 @default.
- W2062271656 hasAuthorship W2062271656A5059443966 @default.
- W2062271656 hasBestOaLocation W20622716562 @default.
- W2062271656 hasConcept C100906024 @default.
- W2062271656 hasConcept C105795698 @default.
- W2062271656 hasConcept C11413529 @default.
- W2062271656 hasConcept C115961682 @default.
- W2062271656 hasConcept C121332964 @default.
- W2062271656 hasConcept C124504099 @default.
- W2062271656 hasConcept C134306372 @default.
- W2062271656 hasConcept C138885662 @default.
- W2062271656 hasConcept C153180895 @default.
- W2062271656 hasConcept C154945302 @default.
- W2062271656 hasConcept C191178318 @default.
- W2062271656 hasConcept C207390915 @default.
- W2062271656 hasConcept C33923547 @default.
- W2062271656 hasConcept C41008148 @default.
- W2062271656 hasConcept C41895202 @default.
- W2062271656 hasConcept C42747912 @default.
- W2062271656 hasConcept C61797465 @default.
- W2062271656 hasConcept C62520636 @default.
- W2062271656 hasConcept C73555534 @default.
- W2062271656 hasConcept C89600930 @default.