Matches in SemOpenAlex for { <https://semopenalex.org/work/W2062490524> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2062490524 endingPage "963" @default.
- W2062490524 startingPage "951" @default.
- W2062490524 abstract "Abstract The estimation of ancestral and current effective population sizes in expanding populations is a fundamental problem in population genetics. Recently it has become possible to scan entire genomes of several individuals within a population. These genomic data sets can be used to estimate basic population parameters such as the effective population size and population growth rate. Full-data-likelihood methods potentially offer a powerful statistical framework for inferring population genetic parameters. However, for large data sets, computationally intensive methods based upon full-likelihood estimates may encounter difficulties. First, the computational method may be prohibitively slow or difficult to implement for large data. Second, estimation bias may markedly affect the accuracy and reliability of parameter estimates, as suggested from past work on coalescent methods. To address these problems, a fast and computationally efficient least-squares method for estimating population parameters from genomic data is presented here. Instead of modeling genomic data using a full likelihood, this new approach uses an analogous function, in which the full data are replaced with a vector of summary statistics. Furthermore, these least-squares estimators may show significantly less estimation bias for growth rate and genetic diversity than a corresponding maximum-likelihood estimator for the same coalescent process. The least-squares statistics also scale up to genome-sized data sets with many nucleotides and loci. These results demonstrate that least-squares statistics will likely prove useful for nonlinear parameter estimation when the underlying population genomic processes have complex evolutionary dynamics involving interactions between mutation, selection, demography, and recombination." @default.
- W2062490524 created "2016-06-24" @default.
- W2062490524 creator A5018585552 @default.
- W2062490524 date "2008-06-01" @default.
- W2062490524 modified "2023-09-23" @default.
- W2062490524 title "A Fast and Reliable Computational Method for Estimating Population Genetic Parameters" @default.
- W2062490524 cites W1710947543 @default.
- W2062490524 cites W1768287364 @default.
- W2062490524 cites W1822198256 @default.
- W2062490524 cites W1825691109 @default.
- W2062490524 cites W1845572763 @default.
- W2062490524 cites W1874454247 @default.
- W2062490524 cites W1880845650 @default.
- W2062490524 cites W1928220195 @default.
- W2062490524 cites W1932965419 @default.
- W2062490524 cites W1973099219 @default.
- W2062490524 cites W2010874664 @default.
- W2062490524 cites W2011738565 @default.
- W2062490524 cites W2013753628 @default.
- W2062490524 cites W2019956985 @default.
- W2062490524 cites W2033850030 @default.
- W2062490524 cites W2040640649 @default.
- W2062490524 cites W2062724456 @default.
- W2062490524 cites W2072493402 @default.
- W2062490524 cites W2072889251 @default.
- W2062490524 cites W2076237237 @default.
- W2062490524 cites W2082967637 @default.
- W2062490524 cites W2097441841 @default.
- W2062490524 cites W2102747180 @default.
- W2062490524 cites W2109195195 @default.
- W2062490524 cites W2115596355 @default.
- W2062490524 cites W2115837217 @default.
- W2062490524 cites W2124003523 @default.
- W2062490524 cites W2124061807 @default.
- W2062490524 cites W2136655076 @default.
- W2062490524 cites W2161644980 @default.
- W2062490524 doi "https://doi.org/10.1534/genetics.108.087049" @default.
- W2062490524 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2429888" @default.
- W2062490524 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18505868" @default.
- W2062490524 hasPublicationYear "2008" @default.
- W2062490524 type Work @default.
- W2062490524 sameAs 2062490524 @default.
- W2062490524 citedByCount "1" @default.
- W2062490524 crossrefType "journal-article" @default.
- W2062490524 hasAuthorship W2062490524A5018585552 @default.
- W2062490524 hasBestOaLocation W20624905241 @default.
- W2062490524 hasConcept C104317684 @default.
- W2062490524 hasConcept C105795698 @default.
- W2062490524 hasConcept C144024400 @default.
- W2062490524 hasConcept C149923435 @default.
- W2062490524 hasConcept C167928553 @default.
- W2062490524 hasConcept C169733012 @default.
- W2062490524 hasConcept C185429906 @default.
- W2062490524 hasConcept C193252679 @default.
- W2062490524 hasConcept C2554327 @default.
- W2062490524 hasConcept C2908647359 @default.
- W2062490524 hasConcept C33923547 @default.
- W2062490524 hasConcept C41008148 @default.
- W2062490524 hasConcept C54355233 @default.
- W2062490524 hasConcept C86803240 @default.
- W2062490524 hasConceptScore W2062490524C104317684 @default.
- W2062490524 hasConceptScore W2062490524C105795698 @default.
- W2062490524 hasConceptScore W2062490524C144024400 @default.
- W2062490524 hasConceptScore W2062490524C149923435 @default.
- W2062490524 hasConceptScore W2062490524C167928553 @default.
- W2062490524 hasConceptScore W2062490524C169733012 @default.
- W2062490524 hasConceptScore W2062490524C185429906 @default.
- W2062490524 hasConceptScore W2062490524C193252679 @default.
- W2062490524 hasConceptScore W2062490524C2554327 @default.
- W2062490524 hasConceptScore W2062490524C2908647359 @default.
- W2062490524 hasConceptScore W2062490524C33923547 @default.
- W2062490524 hasConceptScore W2062490524C41008148 @default.
- W2062490524 hasConceptScore W2062490524C54355233 @default.
- W2062490524 hasConceptScore W2062490524C86803240 @default.
- W2062490524 hasIssue "2" @default.
- W2062490524 hasLocation W20624905241 @default.
- W2062490524 hasLocation W20624905242 @default.
- W2062490524 hasLocation W20624905243 @default.
- W2062490524 hasLocation W20624905244 @default.
- W2062490524 hasOpenAccess W2062490524 @default.
- W2062490524 hasPrimaryLocation W20624905241 @default.
- W2062490524 hasRelatedWork W1968736005 @default.
- W2062490524 hasRelatedWork W1985749591 @default.
- W2062490524 hasRelatedWork W2025840629 @default.
- W2062490524 hasRelatedWork W2069275992 @default.
- W2062490524 hasRelatedWork W2150508312 @default.
- W2062490524 hasRelatedWork W2169901951 @default.
- W2062490524 hasRelatedWork W2267418567 @default.
- W2062490524 hasRelatedWork W2961040797 @default.
- W2062490524 hasRelatedWork W3013529535 @default.
- W2062490524 hasRelatedWork W3091872977 @default.
- W2062490524 hasVolume "179" @default.
- W2062490524 isParatext "false" @default.
- W2062490524 isRetracted "false" @default.
- W2062490524 magId "2062490524" @default.
- W2062490524 workType "article" @default.