Matches in SemOpenAlex for { <https://semopenalex.org/work/W2062591363> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2062591363 endingPage "75" @default.
- W2062591363 startingPage "57" @default.
- W2062591363 abstract "Often a model for the mean and variance of a measurement set is naturally expressed in terms of both deterministic and random parameters. Each of the deterministic parameters has one fixed value while the random parameters come from a distribution of values. We restrict our attention to the case where the random parameters and the measurement error have a Gaussian distribution. In this case, the joint likelihood of the data and random parameters is an extended least squares function. The likelihood of the data alone is the integral of this extended least squares function with respect to the random parameters. This is the likelihood that we would like to optimize, but we do not have a closed form expression for the integral. We use Laplace's method to obtain an approximation for the likelihood of the data alone. Maximizing this approximation is less computationally demanding than maximizing the integral expression, but this yields a different estimator. In addition, evaluation of the approximation requires second derivatives of the original model functions. If we were to use this approximation as our objective function, evaluation of the derivative of the objective would require third derivatives of the original model functions. We present modified approximations that are expressed using only values of the original model functions. Evaluation of the derivative of the modified approximations only requires first derivatives of the original model functions. We use Monte Carlo techniques to approximate the difference between an arbitrary estimator and the estimator that maximizes the likelihood of the data alone. In addition, we approximate the information matrix corresponding to the estimator that maximizes the likelihood of the data alone." @default.
- W2062591363 created "2016-06-24" @default.
- W2062591363 creator A5089063934 @default.
- W2062591363 date "2001-03-01" @default.
- W2062591363 modified "2023-09-23" @default.
- W2062591363 title "Approximating the marginal likelihood estimate for models with random parameters" @default.
- W2062591363 cites W1972790352 @default.
- W2062591363 cites W1993147091 @default.
- W2062591363 cites W2043208049 @default.
- W2062591363 cites W2055478050 @default.
- W2062591363 cites W2057909768 @default.
- W2062591363 cites W2088421586 @default.
- W2062591363 cites W2116063176 @default.
- W2062591363 cites W2334958735 @default.
- W2062591363 cites W4256160900 @default.
- W2062591363 doi "https://doi.org/10.1016/s0096-3003(99)00230-1" @default.
- W2062591363 hasPublicationYear "2001" @default.
- W2062591363 type Work @default.
- W2062591363 sameAs 2062591363 @default.
- W2062591363 citedByCount "15" @default.
- W2062591363 countsByYear W20625913632012 @default.
- W2062591363 countsByYear W20625913632014 @default.
- W2062591363 crossrefType "journal-article" @default.
- W2062591363 hasAuthorship W2062591363A5089063934 @default.
- W2062591363 hasConcept C100906024 @default.
- W2062591363 hasConcept C105795698 @default.
- W2062591363 hasConcept C122123141 @default.
- W2062591363 hasConcept C126255220 @default.
- W2062591363 hasConcept C134306372 @default.
- W2062591363 hasConcept C167928553 @default.
- W2062591363 hasConcept C185429906 @default.
- W2062591363 hasConcept C19499675 @default.
- W2062591363 hasConcept C199360897 @default.
- W2062591363 hasConcept C22243797 @default.
- W2062591363 hasConcept C28826006 @default.
- W2062591363 hasConcept C33643355 @default.
- W2062591363 hasConcept C33923547 @default.
- W2062591363 hasConcept C41008148 @default.
- W2062591363 hasConcept C49781872 @default.
- W2062591363 hasConcept C89106044 @default.
- W2062591363 hasConcept C90559484 @default.
- W2062591363 hasConcept C91025261 @default.
- W2062591363 hasConcept C95923904 @default.
- W2062591363 hasConcept C97937538 @default.
- W2062591363 hasConceptScore W2062591363C100906024 @default.
- W2062591363 hasConceptScore W2062591363C105795698 @default.
- W2062591363 hasConceptScore W2062591363C122123141 @default.
- W2062591363 hasConceptScore W2062591363C126255220 @default.
- W2062591363 hasConceptScore W2062591363C134306372 @default.
- W2062591363 hasConceptScore W2062591363C167928553 @default.
- W2062591363 hasConceptScore W2062591363C185429906 @default.
- W2062591363 hasConceptScore W2062591363C19499675 @default.
- W2062591363 hasConceptScore W2062591363C199360897 @default.
- W2062591363 hasConceptScore W2062591363C22243797 @default.
- W2062591363 hasConceptScore W2062591363C28826006 @default.
- W2062591363 hasConceptScore W2062591363C33643355 @default.
- W2062591363 hasConceptScore W2062591363C33923547 @default.
- W2062591363 hasConceptScore W2062591363C41008148 @default.
- W2062591363 hasConceptScore W2062591363C49781872 @default.
- W2062591363 hasConceptScore W2062591363C89106044 @default.
- W2062591363 hasConceptScore W2062591363C90559484 @default.
- W2062591363 hasConceptScore W2062591363C91025261 @default.
- W2062591363 hasConceptScore W2062591363C95923904 @default.
- W2062591363 hasConceptScore W2062591363C97937538 @default.
- W2062591363 hasIssue "1" @default.
- W2062591363 hasLocation W20625913631 @default.
- W2062591363 hasOpenAccess W2062591363 @default.
- W2062591363 hasPrimaryLocation W20625913631 @default.
- W2062591363 hasRelatedWork W1576292509 @default.
- W2062591363 hasRelatedWork W1775496567 @default.
- W2062591363 hasRelatedWork W2035082913 @default.
- W2062591363 hasRelatedWork W2063830806 @default.
- W2062591363 hasRelatedWork W2175161454 @default.
- W2062591363 hasRelatedWork W2547673049 @default.
- W2062591363 hasRelatedWork W2590002522 @default.
- W2062591363 hasRelatedWork W2791517590 @default.
- W2062591363 hasRelatedWork W2794631075 @default.
- W2062591363 hasRelatedWork W802483534 @default.
- W2062591363 hasVolume "119" @default.
- W2062591363 isParatext "false" @default.
- W2062591363 isRetracted "false" @default.
- W2062591363 magId "2062591363" @default.
- W2062591363 workType "article" @default.