Matches in SemOpenAlex for { <https://semopenalex.org/work/W2062662904> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2062662904 endingPage "183" @default.
- W2062662904 startingPage "173" @default.
- W2062662904 abstract "Fall detection is an area of increasing interest in independence-assisting remote monitoring technologies for the elderly population. Immediate assistance following a fall can lower the risk of medical complications, thus saving lives and reducing the associated health care costs. Therefore it is important to detect a fall as it happens and promptly mobilise first responders for proper care and attendance to possible injury. Radar offers privacy and non-intrusive monitoring capabilities. Micro-Doppler signatures are typically employed for radar-based human motion detections and classifications. Proper time–frequency signal representation is, therefore, required from which important features can be extracted. Missing or noise/interference corrupted data can compromise the integrity of micro-Doppler signatures and subsequently confuse the classifier. In this study, the authors restore the time–frequency signatures associated with human motor activities, such as falling, bending over, sitting and standing, by using a hybrid approach of compressive sensing and multi-window analysis based on Slepian or Hermite functions. Because time–frequency representations of many human gross-motor activities are sparse and share common support in joint-variable domains, the multiple measurement vector approach can be effectively applied for fall classification in both cases of full data or compressed observations." @default.
- W2062662904 created "2016-06-24" @default.
- W2062662904 creator A5007661434 @default.
- W2062662904 creator A5074195801 @default.
- W2062662904 creator A5083050655 @default.
- W2062662904 creator A5083732517 @default.
- W2062662904 date "2015-02-01" @default.
- W2062662904 modified "2023-10-18" @default.
- W2062662904 title "Multi‐window time–frequency signature reconstruction from undersampled continuous‐wave radar measurements for fall detection" @default.
- W2062662904 cites W191944555 @default.
- W2062662904 cites W2006961489 @default.
- W2062662904 cites W2047901865 @default.
- W2062662904 cites W2067681708 @default.
- W2062662904 cites W2085835372 @default.
- W2062662904 cites W2093120767 @default.
- W2062662904 cites W2093505553 @default.
- W2062662904 cites W2098515289 @default.
- W2062662904 cites W2119667497 @default.
- W2062662904 cites W2120129982 @default.
- W2062662904 cites W2126133656 @default.
- W2062662904 cites W2127271355 @default.
- W2062662904 cites W2135463676 @default.
- W2062662904 cites W2157770256 @default.
- W2062662904 cites W2158698691 @default.
- W2062662904 cites W2162409952 @default.
- W2062662904 cites W4250955649 @default.
- W2062662904 cites W4253307330 @default.
- W2062662904 doi "https://doi.org/10.1049/iet-rsn.2014.0254" @default.
- W2062662904 hasPublicationYear "2015" @default.
- W2062662904 type Work @default.
- W2062662904 sameAs 2062662904 @default.
- W2062662904 citedByCount "36" @default.
- W2062662904 countsByYear W20626629042015 @default.
- W2062662904 countsByYear W20626629042016 @default.
- W2062662904 countsByYear W20626629042017 @default.
- W2062662904 countsByYear W20626629042018 @default.
- W2062662904 countsByYear W20626629042019 @default.
- W2062662904 countsByYear W20626629042020 @default.
- W2062662904 countsByYear W20626629042021 @default.
- W2062662904 countsByYear W20626629042022 @default.
- W2062662904 crossrefType "journal-article" @default.
- W2062662904 hasAuthorship W2062662904A5007661434 @default.
- W2062662904 hasAuthorship W2062662904A5074195801 @default.
- W2062662904 hasAuthorship W2062662904A5083050655 @default.
- W2062662904 hasAuthorship W2062662904A5083732517 @default.
- W2062662904 hasConcept C111919701 @default.
- W2062662904 hasConcept C127313418 @default.
- W2062662904 hasConcept C2524010 @default.
- W2062662904 hasConcept C2778751112 @default.
- W2062662904 hasConcept C2779696439 @default.
- W2062662904 hasConcept C33923547 @default.
- W2062662904 hasConcept C41008148 @default.
- W2062662904 hasConcept C554190296 @default.
- W2062662904 hasConcept C62649853 @default.
- W2062662904 hasConcept C76155785 @default.
- W2062662904 hasConceptScore W2062662904C111919701 @default.
- W2062662904 hasConceptScore W2062662904C127313418 @default.
- W2062662904 hasConceptScore W2062662904C2524010 @default.
- W2062662904 hasConceptScore W2062662904C2778751112 @default.
- W2062662904 hasConceptScore W2062662904C2779696439 @default.
- W2062662904 hasConceptScore W2062662904C33923547 @default.
- W2062662904 hasConceptScore W2062662904C41008148 @default.
- W2062662904 hasConceptScore W2062662904C554190296 @default.
- W2062662904 hasConceptScore W2062662904C62649853 @default.
- W2062662904 hasConceptScore W2062662904C76155785 @default.
- W2062662904 hasFunder F4320332753 @default.
- W2062662904 hasIssue "2" @default.
- W2062662904 hasLocation W20626629041 @default.
- W2062662904 hasOpenAccess W2062662904 @default.
- W2062662904 hasPrimaryLocation W20626629041 @default.
- W2062662904 hasRelatedWork W2133875105 @default.
- W2062662904 hasRelatedWork W2147750123 @default.
- W2062662904 hasRelatedWork W2316863499 @default.
- W2062662904 hasRelatedWork W2352008582 @default.
- W2062662904 hasRelatedWork W2352991918 @default.
- W2062662904 hasRelatedWork W2365235480 @default.
- W2062662904 hasRelatedWork W2374954631 @default.
- W2062662904 hasRelatedWork W2382602665 @default.
- W2062662904 hasRelatedWork W2983610293 @default.
- W2062662904 hasRelatedWork W2012842278 @default.
- W2062662904 hasVolume "9" @default.
- W2062662904 isParatext "false" @default.
- W2062662904 isRetracted "false" @default.
- W2062662904 magId "2062662904" @default.
- W2062662904 workType "article" @default.