Matches in SemOpenAlex for { <https://semopenalex.org/work/W2062696348> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2062696348 endingPage "394" @default.
- W2062696348 startingPage "385" @default.
- W2062696348 abstract "To determine in which way the cytoplasmic phosphate potential [ATP]/[ADP] [Pi] influences the rate of the respiratory chain and ATP synthesis in pig heart mitochondria, the effects of systematic variations of ATP, ADP and H3PO4 concentrations and of the whole phosphate potential in the incubation medium have been studied simultaneously on the oxygen uptake, the respiratory control ratio and the kinetics of transformation of the nucleotides and phosphate. 1 Washing the mitochondria lowers their content of orthophosphate ATP, ADP, AMP and NAD, but does not affect their respiratory rate (states 3 and 4 according to Chance and Williams). 2 The phosphate concentration at half maximum velocity of ATP synthesis and of substrate oxidation (glutamate, α-ketoglutarate, β-hydroxybutyrate or succinate) is 200 μM (apparent Km). To obtain a typical straight line in reciprocal plots of Lineweaver and Burk 1/v against 1/[phosphate], one must take into account endogeneous as well as exogeneous phosphate. 3 The ADP concentration at half maximum velocity of oxidation of the 4 substrates (state 3) is: apparent Km between 5 to 20 μM, while it is equal to = 40 μM towards ATP synthesis during the state 3 of oxidation. The ADP/O and P/O ratios approach theoretical values, but the final yield of transformation of ADP into ATP is only 70 to 80%; this yield is independent of the initial concentration of added ADP (25 to 400 μM). 4 In the presence of Mg2+ and phosphate, the addition of ATP (0 to 1,500 μM) does not modify either the state 3 of oxidation, or the ATP synthesis; meanwhile, no specific ATPase activity takes place. However, added ATP speeds up state 4 of oxidation. In the same way, ATP, synthetized by the mitochondria after the addition of ADP, does not affect state 3 but speeds up state 4 of oxidation. Creatine additions (0 to 600 μM) do not affect the respiratory rate in the absence of ATP but the maximum acceleration produced by ATP on state 4 is increased proportionally to the quantity of added creatine. This fact is noteworthy since pig heart mitochondria creatine contents are much higher than their adenine nucleotides contents (free creatine and creatine phosphate: each 30 nmoles/mg protein). In the absence of Mg2+ and in the presence of EDTA (1 to 3 mM), the respiratory level at state 4 is lower; then, ATP (added or synthetized by the mitochondria) no longer accelerates state 4 of oxidation. 5 When orthophosphate is not limiting (5 mM), the presence of ATP (0 to 1,750 μM) does not affect the apparent Km for ADP towards the oxidative phosphorylations. This Km is thus independent of the external [ATP]/[ADP] [Pi] ratio. 6 The kinetics of transformation of the nucleotides added to the mitochondria have been studied. The nucleotides were estimated by chromatography or by enzymatic methods, which gave identical results. A simultaneous formation of ATP and AMP immediately follows the addition of ADP to mitochondria (400 nmoles/3 mg proteins). After ten seconds, the level of AMP is maximum (80 nmoles/3 mg proteins) then it goes down to zero while the ATP synthesis rate is lowered. The kinetics of nucleotide evolution are of the same type during the oxidation of the four substrates and whether pig heart or rat liver mitochondria are concerned. If ATP is added instead of ADP, the nucleotides distribution is not modified. In the presence of oligomycin, the added ADP is converted into an equimolecular mixture of ATP and AMP until the equilibrium of the reaction 2 ADP ⇄ AMP + ATP (K= 0.68 at 28°) is reached. In the presence of 2,4-dinitrophenol the same equilibrium is reached and the ATP formed is only slightly hydrolysed. In the absence of Mg2+ and in the presence of EDTA, the ATP synthesis is a sigmoïdal function of the time and there is no formation of AMP. The kinetics of 32mP incorporation into ATP in the presence of Mg2+ fits with the production of ATP in the absence of Mg2+ but in the presence of EDTA. 7 The results allow a comparison of the affinity of the various enzymatic systems towards ADP. Mg2+ being present, apparent Km (ADP) for the oxidation rate is between 5 to 20 μM while the apparent Km= 40 pM for the ATP synthesis; in the presence of EDTA, Km (ADP) = 50 μM for the ATP synthesis; in the presence of oligomycin apparent Km (ADP) = 90 pM (ATP synthesis). When both EDTA and oligomycin are added, endogeneous ATP is slightly lowered but ADP does not vary. As a general conclusion, the external phosphate potential does not represent the regulatory system for respiratory chain activity. ATP does not appear to enter but goes out easily. If the affinity of ADP towards the oxidative phosphorylations is great, its entrance speed seems to be limiting. The affinity of oxidative phosphorylations towards orthophosphate is weak but the entrance of phosphate does not seem to be limiting. Moreover, adenylate kinase, or systems of the same type, modify all the signals coming from the cytoplasm and cooperate with oxidative phosphorylations to adjust a t any moment the level of each nucleotide." @default.
- W2062696348 created "2016-06-24" @default.
- W2062696348 creator A5024891336 @default.
- W2062696348 creator A5037110690 @default.
- W2062696348 creator A5072324813 @default.
- W2062696348 creator A5073469034 @default.
- W2062696348 date "1969-04-01" @default.
- W2062696348 modified "2023-10-11" @default.
- W2062696348 title "Regulation de l'activite respiratoire des mitochondries de coeur de porc et transformations des nucleotides adenyliques et du phosphate" @default.
- W2062696348 cites W1555701114 @default.
- W2062696348 cites W1559945363 @default.
- W2062696348 cites W1575852352 @default.
- W2062696348 cites W1584002812 @default.
- W2062696348 cites W184953181 @default.
- W2062696348 cites W1976113016 @default.
- W2062696348 cites W1997877073 @default.
- W2062696348 cites W2000266931 @default.
- W2062696348 cites W2025264195 @default.
- W2062696348 cites W204694574 @default.
- W2062696348 cites W2062282234 @default.
- W2062696348 cites W2066741752 @default.
- W2062696348 cites W2090953290 @default.
- W2062696348 cites W2153435210 @default.
- W2062696348 cites W2155536299 @default.
- W2062696348 cites W2344800889 @default.
- W2062696348 cites W2433419622 @default.
- W2062696348 cites W25036243 @default.
- W2062696348 cites W2791764865 @default.
- W2062696348 cites W44459206 @default.
- W2062696348 cites W512522 @default.
- W2062696348 cites W51487972 @default.
- W2062696348 cites W88961476 @default.
- W2062696348 doi "https://doi.org/10.1111/j.1432-1033.1969.tb00539.x" @default.
- W2062696348 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/4979487" @default.
- W2062696348 hasPublicationYear "1969" @default.
- W2062696348 type Work @default.
- W2062696348 sameAs 2062696348 @default.
- W2062696348 citedByCount "45" @default.
- W2062696348 crossrefType "journal-article" @default.
- W2062696348 hasAuthorship W2062696348A5024891336 @default.
- W2062696348 hasAuthorship W2062696348A5037110690 @default.
- W2062696348 hasAuthorship W2062696348A5072324813 @default.
- W2062696348 hasAuthorship W2062696348A5073469034 @default.
- W2062696348 hasBestOaLocation W20626963481 @default.
- W2062696348 hasConcept C104317684 @default.
- W2062696348 hasConcept C112243037 @default.
- W2062696348 hasConcept C181199279 @default.
- W2062696348 hasConcept C185592680 @default.
- W2062696348 hasConcept C18903297 @default.
- W2062696348 hasConcept C2777132085 @default.
- W2062696348 hasConcept C2777289219 @default.
- W2062696348 hasConcept C28859421 @default.
- W2062696348 hasConcept C3020377403 @default.
- W2062696348 hasConcept C512185932 @default.
- W2062696348 hasConcept C53009064 @default.
- W2062696348 hasConcept C55493867 @default.
- W2062696348 hasConcept C57600042 @default.
- W2062696348 hasConcept C71240020 @default.
- W2062696348 hasConcept C86803240 @default.
- W2062696348 hasConceptScore W2062696348C104317684 @default.
- W2062696348 hasConceptScore W2062696348C112243037 @default.
- W2062696348 hasConceptScore W2062696348C181199279 @default.
- W2062696348 hasConceptScore W2062696348C185592680 @default.
- W2062696348 hasConceptScore W2062696348C18903297 @default.
- W2062696348 hasConceptScore W2062696348C2777132085 @default.
- W2062696348 hasConceptScore W2062696348C2777289219 @default.
- W2062696348 hasConceptScore W2062696348C28859421 @default.
- W2062696348 hasConceptScore W2062696348C3020377403 @default.
- W2062696348 hasConceptScore W2062696348C512185932 @default.
- W2062696348 hasConceptScore W2062696348C53009064 @default.
- W2062696348 hasConceptScore W2062696348C55493867 @default.
- W2062696348 hasConceptScore W2062696348C57600042 @default.
- W2062696348 hasConceptScore W2062696348C71240020 @default.
- W2062696348 hasConceptScore W2062696348C86803240 @default.
- W2062696348 hasIssue "3" @default.
- W2062696348 hasLocation W20626963481 @default.
- W2062696348 hasLocation W20626963482 @default.
- W2062696348 hasOpenAccess W2062696348 @default.
- W2062696348 hasPrimaryLocation W20626963481 @default.
- W2062696348 hasRelatedWork W1967526473 @default.
- W2062696348 hasRelatedWork W2007266325 @default.
- W2062696348 hasRelatedWork W2012338252 @default.
- W2062696348 hasRelatedWork W2032109657 @default.
- W2062696348 hasRelatedWork W2050444169 @default.
- W2062696348 hasRelatedWork W2065840537 @default.
- W2062696348 hasRelatedWork W2094985665 @default.
- W2062696348 hasRelatedWork W2414653338 @default.
- W2062696348 hasRelatedWork W3049648804 @default.
- W2062696348 hasRelatedWork W4200075423 @default.
- W2062696348 hasVolume "8" @default.
- W2062696348 isParatext "false" @default.
- W2062696348 isRetracted "false" @default.
- W2062696348 magId "2062696348" @default.
- W2062696348 workType "article" @default.