Matches in SemOpenAlex for { <https://semopenalex.org/work/W2062955239> ?p ?o ?g. }
- W2062955239 endingPage "231" @default.
- W2062955239 startingPage "215" @default.
- W2062955239 abstract "Artificial neural networks act as universal function approximators. This makes them useful in modeling problems in which the relation between dependent and independent variables is poorly understood. In this paper, the ability of an artificial neural network (ANN) to provide a data-driven approximation of the explicit relation between transmissivity and hydraulic head as described by the ground water flow equation is demonstrated. This approximation can be easily solved for the inverse problem and is capable of simulating aquifer response to additional stresses. The methodology developed as part of the research presented in this paper is comprised of two major tasks. The first task is to successfully train the ANN to approximate the relation between any possible transmissivity field of the aquifer being modeled and the hydraulic head values as described by a ground water flow model. This, in effect, will produce a data-driven model capable of mapping the relation between any realization of tranmissivity of a specific ground water aquifer and the resulting hydraulic head values as computed by the ground water flow equations. The second task is to invert this model to solve the inverse problem so as to produce a transmissivity field that will honor the known transmissivity values and reproduce the known hydraulic head values when used in a ground water flow model. This paper explains the ANN training and the inversion process and demonstrates that the process works using a hypothetical two-dimensional aquifer problem where the input and outputs are assumed known and therefore the performance of the inversion process can be quantified." @default.
- W2062955239 created "2016-06-24" @default.
- W2062955239 creator A5058956474 @default.
- W2062955239 creator A5084851307 @default.
- W2062955239 date "2006-03-01" @default.
- W2062955239 modified "2023-10-01" @default.
- W2062955239 title "Using neural networks for parameter estimation in ground water" @default.
- W2062955239 cites W1973985853 @default.
- W2062955239 cites W1975373052 @default.
- W2062955239 cites W1985998030 @default.
- W2062955239 cites W1986909844 @default.
- W2062955239 cites W1997052296 @default.
- W2062955239 cites W1998481008 @default.
- W2062955239 cites W2012603248 @default.
- W2062955239 cites W2020546414 @default.
- W2062955239 cites W2023567628 @default.
- W2062955239 cites W2033108198 @default.
- W2062955239 cites W2051233814 @default.
- W2062955239 cites W2054917359 @default.
- W2062955239 cites W2064820716 @default.
- W2062955239 cites W2065414766 @default.
- W2062955239 cites W2071479170 @default.
- W2062955239 cites W2086746507 @default.
- W2062955239 cites W2104110179 @default.
- W2062955239 cites W2155728167 @default.
- W2062955239 cites W2163824141 @default.
- W2062955239 cites W4236138975 @default.
- W2062955239 doi "https://doi.org/10.1016/j.jhydrol.2005.05.028" @default.
- W2062955239 hasPublicationYear "2006" @default.
- W2062955239 type Work @default.
- W2062955239 sameAs 2062955239 @default.
- W2062955239 citedByCount "82" @default.
- W2062955239 countsByYear W20629552392012 @default.
- W2062955239 countsByYear W20629552392013 @default.
- W2062955239 countsByYear W20629552392014 @default.
- W2062955239 countsByYear W20629552392015 @default.
- W2062955239 countsByYear W20629552392016 @default.
- W2062955239 countsByYear W20629552392017 @default.
- W2062955239 countsByYear W20629552392018 @default.
- W2062955239 countsByYear W20629552392019 @default.
- W2062955239 countsByYear W20629552392020 @default.
- W2062955239 countsByYear W20629552392021 @default.
- W2062955239 countsByYear W20629552392022 @default.
- W2062955239 countsByYear W20629552392023 @default.
- W2062955239 crossrefType "journal-article" @default.
- W2062955239 hasAuthorship W2062955239A5058956474 @default.
- W2062955239 hasAuthorship W2062955239A5084851307 @default.
- W2062955239 hasConcept C109007969 @default.
- W2062955239 hasConcept C114793014 @default.
- W2062955239 hasConcept C126255220 @default.
- W2062955239 hasConcept C127313418 @default.
- W2062955239 hasConcept C131227075 @default.
- W2062955239 hasConcept C134306372 @default.
- W2062955239 hasConcept C135252773 @default.
- W2062955239 hasConcept C14036430 @default.
- W2062955239 hasConcept C151730666 @default.
- W2062955239 hasConcept C154945302 @default.
- W2062955239 hasConcept C159851900 @default.
- W2062955239 hasConcept C176650113 @default.
- W2062955239 hasConcept C187320778 @default.
- W2062955239 hasConcept C1893757 @default.
- W2062955239 hasConcept C207467116 @default.
- W2062955239 hasConcept C2524010 @default.
- W2062955239 hasConcept C2780312720 @default.
- W2062955239 hasConcept C28826006 @default.
- W2062955239 hasConcept C33923547 @default.
- W2062955239 hasConcept C38349280 @default.
- W2062955239 hasConcept C41008148 @default.
- W2062955239 hasConcept C50644808 @default.
- W2062955239 hasConcept C75622301 @default.
- W2062955239 hasConcept C76177295 @default.
- W2062955239 hasConcept C78458016 @default.
- W2062955239 hasConcept C86803240 @default.
- W2062955239 hasConceptScore W2062955239C109007969 @default.
- W2062955239 hasConceptScore W2062955239C114793014 @default.
- W2062955239 hasConceptScore W2062955239C126255220 @default.
- W2062955239 hasConceptScore W2062955239C127313418 @default.
- W2062955239 hasConceptScore W2062955239C131227075 @default.
- W2062955239 hasConceptScore W2062955239C134306372 @default.
- W2062955239 hasConceptScore W2062955239C135252773 @default.
- W2062955239 hasConceptScore W2062955239C14036430 @default.
- W2062955239 hasConceptScore W2062955239C151730666 @default.
- W2062955239 hasConceptScore W2062955239C154945302 @default.
- W2062955239 hasConceptScore W2062955239C159851900 @default.
- W2062955239 hasConceptScore W2062955239C176650113 @default.
- W2062955239 hasConceptScore W2062955239C187320778 @default.
- W2062955239 hasConceptScore W2062955239C1893757 @default.
- W2062955239 hasConceptScore W2062955239C207467116 @default.
- W2062955239 hasConceptScore W2062955239C2524010 @default.
- W2062955239 hasConceptScore W2062955239C2780312720 @default.
- W2062955239 hasConceptScore W2062955239C28826006 @default.
- W2062955239 hasConceptScore W2062955239C33923547 @default.
- W2062955239 hasConceptScore W2062955239C38349280 @default.
- W2062955239 hasConceptScore W2062955239C41008148 @default.
- W2062955239 hasConceptScore W2062955239C50644808 @default.
- W2062955239 hasConceptScore W2062955239C75622301 @default.
- W2062955239 hasConceptScore W2062955239C76177295 @default.
- W2062955239 hasConceptScore W2062955239C78458016 @default.