Matches in SemOpenAlex for { <https://semopenalex.org/work/W2062985069> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2062985069 abstract "We propose a statistical learning model for classifying cognitive processes based on distributed patterns of neural activation in the brain, acquired via functional magnetic resonance imaging (fMRI). In the proposed learning machine, local meshes are formed around each voxel. The distance between voxels in the mesh is determined by using functional neighborhood concept. In order to define functional neighborhood, the similarities between the time series recorded for voxels are measured and functional connectivity matrices are constructed. Then, the local mesh for each voxel is formed by including the functionally closest neighboring voxels in the mesh. The relationship between the voxels within a mesh is estimated by using a linear regression model. These relationship vectors, called Functional Connectivity aware Local Relational Features (FC-LRF) are then used to train a statistical learning machine. The proposed method was tested on a recognition memory experiment, including data pertaining to encoding and retrieval of words belonging to ten different semantic categories. Two popular classifiers, namely k-Nearest Neighbor and Support Vector Machine, are trained in order to predict the semantic category of the item being retrieved, based on activation patterns during encoding. The classification performance of the Functional Mesh Learning model, which range in 62–68% is superior to the classical multi-voxel pattern analysis (MVPA) methods, which range in 40–48%, for ten semantic categories." @default.
- W2062985069 created "2016-06-24" @default.
- W2062985069 creator A5004947644 @default.
- W2062985069 creator A5022347572 @default.
- W2062985069 creator A5035914396 @default.
- W2062985069 creator A5054882290 @default.
- W2062985069 creator A5055609752 @default.
- W2062985069 date "2013-07-01" @default.
- W2062985069 modified "2023-09-26" @default.
- W2062985069 title "Functional Mesh Learning for pattern analysis of cognitive processes" @default.
- W2062985069 cites W1660656898 @default.
- W2062985069 cites W1747101780 @default.
- W2062985069 cites W1965886953 @default.
- W2062985069 cites W1971600338 @default.
- W2062985069 cites W1977707084 @default.
- W2062985069 cites W1987555200 @default.
- W2062985069 cites W1995708743 @default.
- W2062985069 cites W1999653836 @default.
- W2062985069 cites W2006240253 @default.
- W2062985069 cites W2022066634 @default.
- W2062985069 cites W2041853331 @default.
- W2062985069 cites W2043900368 @default.
- W2062985069 cites W2062796649 @default.
- W2062985069 cites W2068641562 @default.
- W2062985069 cites W2070032835 @default.
- W2062985069 cites W2078204079 @default.
- W2062985069 cites W2097982135 @default.
- W2062985069 cites W2101219946 @default.
- W2062985069 cites W2118693417 @default.
- W2062985069 cites W2123923307 @default.
- W2062985069 cites W2124654072 @default.
- W2062985069 cites W2124953625 @default.
- W2062985069 cites W2125830375 @default.
- W2062985069 cites W2127531787 @default.
- W2062985069 cites W2138905229 @default.
- W2062985069 cites W2144473187 @default.
- W2062985069 cites W2148340534 @default.
- W2062985069 cites W2152322845 @default.
- W2062985069 cites W2169672624 @default.
- W2062985069 cites W2316898203 @default.
- W2062985069 cites W3150049173 @default.
- W2062985069 doi "https://doi.org/10.1109/icci-cc.2013.6622239" @default.
- W2062985069 hasPublicationYear "2013" @default.
- W2062985069 type Work @default.
- W2062985069 sameAs 2062985069 @default.
- W2062985069 citedByCount "20" @default.
- W2062985069 countsByYear W20629850692013 @default.
- W2062985069 countsByYear W20629850692014 @default.
- W2062985069 countsByYear W20629850692016 @default.
- W2062985069 countsByYear W20629850692017 @default.
- W2062985069 countsByYear W20629850692018 @default.
- W2062985069 countsByYear W20629850692019 @default.
- W2062985069 countsByYear W20629850692020 @default.
- W2062985069 crossrefType "proceedings-article" @default.
- W2062985069 hasAuthorship W2062985069A5004947644 @default.
- W2062985069 hasAuthorship W2062985069A5022347572 @default.
- W2062985069 hasAuthorship W2062985069A5035914396 @default.
- W2062985069 hasAuthorship W2062985069A5054882290 @default.
- W2062985069 hasAuthorship W2062985069A5055609752 @default.
- W2062985069 hasConcept C119857082 @default.
- W2062985069 hasConcept C121684516 @default.
- W2062985069 hasConcept C12267149 @default.
- W2062985069 hasConcept C153180895 @default.
- W2062985069 hasConcept C154945302 @default.
- W2062985069 hasConcept C169760540 @default.
- W2062985069 hasConcept C2779226451 @default.
- W2062985069 hasConcept C31487907 @default.
- W2062985069 hasConcept C41008148 @default.
- W2062985069 hasConcept C54170458 @default.
- W2062985069 hasConcept C86803240 @default.
- W2062985069 hasConceptScore W2062985069C119857082 @default.
- W2062985069 hasConceptScore W2062985069C121684516 @default.
- W2062985069 hasConceptScore W2062985069C12267149 @default.
- W2062985069 hasConceptScore W2062985069C153180895 @default.
- W2062985069 hasConceptScore W2062985069C154945302 @default.
- W2062985069 hasConceptScore W2062985069C169760540 @default.
- W2062985069 hasConceptScore W2062985069C2779226451 @default.
- W2062985069 hasConceptScore W2062985069C31487907 @default.
- W2062985069 hasConceptScore W2062985069C41008148 @default.
- W2062985069 hasConceptScore W2062985069C54170458 @default.
- W2062985069 hasConceptScore W2062985069C86803240 @default.
- W2062985069 hasLocation W20629850691 @default.
- W2062985069 hasOpenAccess W2062985069 @default.
- W2062985069 hasPrimaryLocation W20629850691 @default.
- W2062985069 hasRelatedWork W2041399278 @default.
- W2062985069 hasRelatedWork W2043217421 @default.
- W2062985069 hasRelatedWork W2067150211 @default.
- W2062985069 hasRelatedWork W2091724545 @default.
- W2062985069 hasRelatedWork W2099369243 @default.
- W2062985069 hasRelatedWork W2120008580 @default.
- W2062985069 hasRelatedWork W2541649204 @default.
- W2062985069 hasRelatedWork W2971869328 @default.
- W2062985069 hasRelatedWork W4205958290 @default.
- W2062985069 hasRelatedWork W2345184372 @default.
- W2062985069 isParatext "false" @default.
- W2062985069 isRetracted "false" @default.
- W2062985069 magId "2062985069" @default.
- W2062985069 workType "article" @default.