Matches in SemOpenAlex for { <https://semopenalex.org/work/W2063037873> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2063037873 abstract "Abstract Multicomponent diffusion is important in a variety of applications, including improved oil recovery from CO2 injection in fractured reservoirs, solvent injection in heavy oil reservoirs, and flowline deposition. In order to calculate diffusion flux, molecular diffusion coefficients are required, where fluid non-ideality and the multicomponent nature of the mixture have a significant effect. In this work, we will present a unified model for the calculation of diffusion coefficients of gas and liquid states of multicomponent petroleum fluids. We propose a new model for the binary infinite dilution diffusion coefficients. The generalized Vignes relation is used in multicomponent mixtures. The non-ideality is rigorously described by the fugacity derivatives evaluated by the volume-translated Peng-Robinson equation of state. Predictions for highly non-ideal gas and liquid multicomponent mixtures demonstrate the reliability of the proposed methodology. Introduction Molecular diffusion is a fundamental process in a wide range of disciplines, including polymer science,1 isotope separation,2 combustion,3 and heterogeneous catalysis,4 and petroleum engineering. Multicomponent diffusion in petroleum engineering is important in CO2 flooding of fractured reservoirs, where molecular diffusion has been shown to be an important rate-controlling mechanism.5 On the microscopic (pore) scale, molecular diffusion is the mechanism by which intimate mixing of CO2 and oil occurs.6 CO2 can also be injected into depleted natural gas reservoirs to enhance methane recovery, while simultaneously sequestering large amounts of CO2; molecular diffusion affects mixing between CO2 and methane.7 In heavy oil and bitumen recovery by the vapor extraction (VAPEX) process, light hydrocarbon or non-hydrocarbon solvents are injected in the recovery. The production rate from VAPEX is strongly dependent on the oil viscosity reduction, which in turn depends on the dissolution of the solvent into heavy oil, mainly through molecular diffusion.8 It has been shown that molecular diffusion of the injected solvent in heavy oil contributes to the success of the VAPEX process.9 Accurate molecular diffusion coefficients of gases in bitumen are essential for calculating the rate of gas dissolution in bitumens and heavy oils.10 Despite the significance of diffusion in oil recovery processes, there have been few studies concerned with measurements of molecular diffusion coefficients at reservoir conditions; experimental data on gas diffusion coefficients in heavy oils are relatively scarce.11 The accurate prediction of diffusion coefficients of methane in liquid hydrocarbons is one of the key parameters for improving the prediction of compositional reservoir simulators. 12,13 Gas injection in heterogeneous or fractured reservoirs and gas diffusion through cap rock are processes where diffusion may play a significant role.14 There is currently no general reliable theoretical framework to accurately predict molecular diffusion coefficients (generally called D) in non-ideal multicomponent petroleum fluids. The Chapman-Enskog theory15 accounts for diffusion in low pressure binary gas mixtures, but fails for liquids. The Stokes-Einstein equation16 quantitatively describes diffusion in liquids, but is not applicable to real mixtures. Some of the experimental data for diffusion coefficients in petroleum fluids may be also suspect, due to the simplifications in models to infer such data. As an example, when pressure drop data are used to model diffusion in liquids, there is an implicit assumption that the diffusion coefficients are independent of concentration. This may not be the case for CO2-crude oil systems.9" @default.
- W2063037873 created "2016-06-24" @default.
- W2063037873 creator A5008059725 @default.
- W2063037873 creator A5062188169 @default.
- W2063037873 date "2007-11-11" @default.
- W2063037873 modified "2023-09-27" @default.
- W2063037873 title "A Unified Model for Diffusion Coefficient Prediction in Non-Ideal Petroleum Fluids" @default.
- W2063037873 doi "https://doi.org/10.2118/113021-stu" @default.
- W2063037873 hasPublicationYear "2007" @default.
- W2063037873 type Work @default.
- W2063037873 sameAs 2063037873 @default.
- W2063037873 citedByCount "3" @default.
- W2063037873 countsByYear W20630378732021 @default.
- W2063037873 countsByYear W20630378732022 @default.
- W2063037873 crossrefType "proceedings-article" @default.
- W2063037873 hasAuthorship W2063037873A5008059725 @default.
- W2063037873 hasAuthorship W2063037873A5062188169 @default.
- W2063037873 hasConcept C121332964 @default.
- W2063037873 hasConcept C127313418 @default.
- W2063037873 hasConcept C138777275 @default.
- W2063037873 hasConcept C162324750 @default.
- W2063037873 hasConcept C176217482 @default.
- W2063037873 hasConcept C178790620 @default.
- W2063037873 hasConcept C185592680 @default.
- W2063037873 hasConcept C18762648 @default.
- W2063037873 hasConcept C192562407 @default.
- W2063037873 hasConcept C21547014 @default.
- W2063037873 hasConcept C2779681308 @default.
- W2063037873 hasConcept C3017618536 @default.
- W2063037873 hasConcept C41008148 @default.
- W2063037873 hasConcept C516920438 @default.
- W2063037873 hasConcept C53810900 @default.
- W2063037873 hasConcept C548895740 @default.
- W2063037873 hasConcept C56739046 @default.
- W2063037873 hasConcept C57736034 @default.
- W2063037873 hasConcept C62520636 @default.
- W2063037873 hasConcept C68710425 @default.
- W2063037873 hasConcept C69357855 @default.
- W2063037873 hasConcept C78762247 @default.
- W2063037873 hasConcept C97355855 @default.
- W2063037873 hasConceptScore W2063037873C121332964 @default.
- W2063037873 hasConceptScore W2063037873C127313418 @default.
- W2063037873 hasConceptScore W2063037873C138777275 @default.
- W2063037873 hasConceptScore W2063037873C162324750 @default.
- W2063037873 hasConceptScore W2063037873C176217482 @default.
- W2063037873 hasConceptScore W2063037873C178790620 @default.
- W2063037873 hasConceptScore W2063037873C185592680 @default.
- W2063037873 hasConceptScore W2063037873C18762648 @default.
- W2063037873 hasConceptScore W2063037873C192562407 @default.
- W2063037873 hasConceptScore W2063037873C21547014 @default.
- W2063037873 hasConceptScore W2063037873C2779681308 @default.
- W2063037873 hasConceptScore W2063037873C3017618536 @default.
- W2063037873 hasConceptScore W2063037873C41008148 @default.
- W2063037873 hasConceptScore W2063037873C516920438 @default.
- W2063037873 hasConceptScore W2063037873C53810900 @default.
- W2063037873 hasConceptScore W2063037873C548895740 @default.
- W2063037873 hasConceptScore W2063037873C56739046 @default.
- W2063037873 hasConceptScore W2063037873C57736034 @default.
- W2063037873 hasConceptScore W2063037873C62520636 @default.
- W2063037873 hasConceptScore W2063037873C68710425 @default.
- W2063037873 hasConceptScore W2063037873C69357855 @default.
- W2063037873 hasConceptScore W2063037873C78762247 @default.
- W2063037873 hasConceptScore W2063037873C97355855 @default.
- W2063037873 hasLocation W20630378731 @default.
- W2063037873 hasOpenAccess W2063037873 @default.
- W2063037873 hasPrimaryLocation W20630378731 @default.
- W2063037873 hasRelatedWork W1964017291 @default.
- W2063037873 hasRelatedWork W1971266963 @default.
- W2063037873 hasRelatedWork W1985631436 @default.
- W2063037873 hasRelatedWork W1985681625 @default.
- W2063037873 hasRelatedWork W2062991996 @default.
- W2063037873 hasRelatedWork W2085393758 @default.
- W2063037873 hasRelatedWork W223212962 @default.
- W2063037873 hasRelatedWork W2948025598 @default.
- W2063037873 hasRelatedWork W2973258780 @default.
- W2063037873 hasRelatedWork W4282964259 @default.
- W2063037873 isParatext "false" @default.
- W2063037873 isRetracted "false" @default.
- W2063037873 magId "2063037873" @default.
- W2063037873 workType "article" @default.