Matches in SemOpenAlex for { <https://semopenalex.org/work/W2063065493> ?p ?o ?g. }
- W2063065493 endingPage "1103" @default.
- W2063065493 startingPage "1094" @default.
- W2063065493 abstract "Securing our energy future is the most important problem that humanity faces in this century. Burning fossil fuels is not sustainable, and wide use of renewable energy sources will require a drastically increased ability to store electrical energy. In the move toward an electrical economy, chemical (batteries) and capacitive energy storage (electrochemical capacitors or supercapacitors) devices are expected to play an important role. This Account summarizes research in the field of electrochemical capacitors conducted over the past decade.Overall, the combination of the right electrode materials with a proper electrolyte can successfully increase both the energy stored by the device and its power, but no perfect active material exists and no electrolyte suits every material and every performance goal. However, today, many materials are available, including porous activated, carbide-derived, and templated carbons with high surface areas and porosities that range from subnanometer to just a few nanometers. If the pore size is matched with the electrolyte ion size, those materials can provide high energy density. Exohedral nanoparticles, such as carbon nanotubes and onion-like carbon, can provide high power due to fast ion sorption/desorption on their outer surfaces. Because of its higher charge–discharge rates compared with activated carbons, graphene has attracted increasing attention, but graphene had not yet shown a higher volumetric capacitance than porous carbons.Although aqueous electrolytes, such as sodium sulfate, are the safest and least expensive, they have a limited voltage window. Organic electrolytes, such as solutions of [N(C2H5)4]BF4 in acetonitrile or propylene carbonate, are the most common in commercial devices. Researchers are increasingly interested in nonflammable ionic liquids. These liquids have low vapor pressures, which allow them to be used safely over a temperature range from −50 °C to at least 100 °C and over a larger voltage window, which results in a higher energy density than other electrolytes.In situ characterization techniques, such as nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), and electrochemical quartz crystal microbalance (EQCM) have improved our understanding of the electrical double layer in confinement and desolvation of ions in narrow pores. Atomisitic and continuum modeling have verified and guided these experimental studies. The further development of materials and better understanding of charged solid-electrolyte interfaces should lead to wider use of capacitive energy storage at scales ranging from microelectronics to transportation and the electrical grid. Even with the many exciting results obtained using newer materials, such as graphene and nanotubes, the promising properties reported for new electrode materials do not directly extrapolate to improved device performance. Although thin films of nanoparticles may show a very high gravimetric power density and discharge rate, those characteristics will not scale up linearly with the thickness of the electrode." @default.
- W2063065493 created "2016-06-24" @default.
- W2063065493 creator A5016144644 @default.
- W2063065493 creator A5035467559 @default.
- W2063065493 date "2012-06-06" @default.
- W2063065493 modified "2023-10-09" @default.
- W2063065493 title "Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems" @default.
- W2063065493 cites W1966782650 @default.
- W2063065493 cites W1968235729 @default.
- W2063065493 cites W1968552348 @default.
- W2063065493 cites W1970996323 @default.
- W2063065493 cites W1972121081 @default.
- W2063065493 cites W1973101250 @default.
- W2063065493 cites W1978327124 @default.
- W2063065493 cites W1979107603 @default.
- W2063065493 cites W1982479518 @default.
- W2063065493 cites W1982697028 @default.
- W2063065493 cites W1990198527 @default.
- W2063065493 cites W1991780439 @default.
- W2063065493 cites W1992775150 @default.
- W2063065493 cites W1995264557 @default.
- W2063065493 cites W2002190436 @default.
- W2063065493 cites W2004558737 @default.
- W2063065493 cites W2014935324 @default.
- W2063065493 cites W2024849251 @default.
- W2063065493 cites W2026346936 @default.
- W2063065493 cites W2027883622 @default.
- W2063065493 cites W2031004145 @default.
- W2063065493 cites W2032160753 @default.
- W2063065493 cites W2033529408 @default.
- W2063065493 cites W2035307110 @default.
- W2063065493 cites W2036591717 @default.
- W2063065493 cites W2038361512 @default.
- W2063065493 cites W2044712757 @default.
- W2063065493 cites W2047557763 @default.
- W2063065493 cites W2052319966 @default.
- W2063065493 cites W2064950666 @default.
- W2063065493 cites W2066328578 @default.
- W2063065493 cites W2069410028 @default.
- W2063065493 cites W2075051245 @default.
- W2063065493 cites W2075550639 @default.
- W2063065493 cites W2076622606 @default.
- W2063065493 cites W2079856087 @default.
- W2063065493 cites W2081870623 @default.
- W2063065493 cites W2085730658 @default.
- W2063065493 cites W2088518295 @default.
- W2063065493 cites W2092061644 @default.
- W2063065493 cites W2103533417 @default.
- W2063065493 cites W2108031695 @default.
- W2063065493 cites W2108561247 @default.
- W2063065493 cites W2122143506 @default.
- W2063065493 cites W2126551836 @default.
- W2063065493 cites W2130864065 @default.
- W2063065493 cites W2139402501 @default.
- W2063065493 cites W2185616751 @default.
- W2063065493 cites W2186370724 @default.
- W2063065493 cites W2329952842 @default.
- W2063065493 cites W2331908445 @default.
- W2063065493 doi "https://doi.org/10.1021/ar200306b" @default.
- W2063065493 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22670843" @default.
- W2063065493 hasPublicationYear "2012" @default.
- W2063065493 type Work @default.
- W2063065493 sameAs 2063065493 @default.
- W2063065493 citedByCount "1253" @default.
- W2063065493 countsByYear W20630654932012 @default.
- W2063065493 countsByYear W20630654932013 @default.
- W2063065493 countsByYear W20630654932014 @default.
- W2063065493 countsByYear W20630654932015 @default.
- W2063065493 countsByYear W20630654932016 @default.
- W2063065493 countsByYear W20630654932017 @default.
- W2063065493 countsByYear W20630654932018 @default.
- W2063065493 countsByYear W20630654932019 @default.
- W2063065493 countsByYear W20630654932020 @default.
- W2063065493 countsByYear W20630654932021 @default.
- W2063065493 countsByYear W20630654932022 @default.
- W2063065493 countsByYear W20630654932023 @default.
- W2063065493 crossrefType "journal-article" @default.
- W2063065493 hasAuthorship W2063065493A5016144644 @default.
- W2063065493 hasAuthorship W2063065493A5035467559 @default.
- W2063065493 hasConcept C104779481 @default.
- W2063065493 hasConcept C119599485 @default.
- W2063065493 hasConcept C121332964 @default.
- W2063065493 hasConcept C127413603 @default.
- W2063065493 hasConcept C140205800 @default.
- W2063065493 hasConcept C147789679 @default.
- W2063065493 hasConcept C150394285 @default.
- W2063065493 hasConcept C159985019 @default.
- W2063065493 hasConcept C163258240 @default.
- W2063065493 hasConcept C165801399 @default.
- W2063065493 hasConcept C171250308 @default.
- W2063065493 hasConcept C17525397 @default.
- W2063065493 hasConcept C178790620 @default.
- W2063065493 hasConcept C185592680 @default.
- W2063065493 hasConcept C192562407 @default.
- W2063065493 hasConcept C22547674 @default.
- W2063065493 hasConcept C2777983707 @default.
- W2063065493 hasConcept C2779647737 @default.
- W2063065493 hasConcept C30066665 @default.