Matches in SemOpenAlex for { <https://semopenalex.org/work/W2063137082> ?p ?o ?g. }
- W2063137082 endingPage "884" @default.
- W2063137082 startingPage "875" @default.
- W2063137082 abstract "The resolution of a PET scanner (2.5–4.5 mm for brain imaging) is similar to the thickness of the cortex in the (human) brain (2.5 mm on average), hampering accurate activity distribution reconstruction. Many techniques to compensate for the limited resolution during or post-reconstruction have been proposed in the past and have been shown to improve the quantitative accuracy. In this study, state-of-the-art reconstruction techniques are compared on a voxel-basis for quantification accuracy and group analysis using both simulated and measured data of healthy volunteers and patients with epilepsy. Maximum a posteriori (MAP) reconstructions using either a segmentation-based or a segmentation-less anatomical prior were compared to maximum likelihood expectation maximization (MLEM) reconstruction with resolution recovery. As anatomical information, a spatially aligned 3D T1-weighted magnetic resonance image was used. Firstly, the algorithms were compared using normal brain images to detect systematic bias with respect to the true activity distribution, as well as systematic differences between two methods. Secondly, it was verified whether the algorithms yielded similar results in a group comparison study. Significant differences were observed between the reconstructed and the true activity, with the largest errors when using (post-smoothed) MLEM. Only 5–10% underestimation in cortical gray matter voxel activity was found for both MAP reconstructions. Higher errors were observed at GM edges. MAP with the segmentation-based prior also resulted in a significant bias in the subcortical regions due to segmentation inaccuracies, while MAP with the anatomical prior which does not need segmentation did not. Significant differences in reconstructed activity were also found between the algorithms at similar locations (mainly in gray matter edge voxels and in cerebrospinal fluid voxels) in the simulated as well as in the clinical data sets. Nevertheless, when comparing two groups, very similar regions of significant hypometabolism were detected by all algorithms. Including anatomical a priori information during reconstruction in combination with resolution modeling yielded accurate gray matter activity estimates, and a significant improvement in quantification accuracy was found when compared to post-smoothed MLEM reconstruction with resolution modeling. AsymBowsher provided the most accurate subcortical GM activity estimates. It is also reassuring that the differences found between the algorithms did not hamper the detection of hypometabolic regions in the gray matter when performing a voxel-based group comparison. Nevertheless, the size of the detected clusters differed. More elaborated and application-specific studies are required to decide which algorithm is best for a group analysis." @default.
- W2063137082 created "2016-06-24" @default.
- W2063137082 creator A5006794669 @default.
- W2063137082 creator A5018672621 @default.
- W2063137082 creator A5025144654 @default.
- W2063137082 creator A5033619732 @default.
- W2063137082 creator A5059287667 @default.
- W2063137082 creator A5081304921 @default.
- W2063137082 date "2014-11-01" @default.
- W2063137082 modified "2023-10-02" @default.
- W2063137082 title "Voxel-based comparison of state-of-the-art reconstruction algorithms for 18F-FDG PET brain imaging using simulated and clinical data" @default.
- W2063137082 cites W1968093421 @default.
- W2063137082 cites W1968363504 @default.
- W2063137082 cites W1973174264 @default.
- W2063137082 cites W1980288291 @default.
- W2063137082 cites W1987565821 @default.
- W2063137082 cites W2029955122 @default.
- W2063137082 cites W2037922117 @default.
- W2063137082 cites W2054765812 @default.
- W2063137082 cites W2069629287 @default.
- W2063137082 cites W2095309401 @default.
- W2063137082 cites W2099801199 @default.
- W2063137082 cites W2101445835 @default.
- W2063137082 cites W2109812509 @default.
- W2063137082 cites W2110208125 @default.
- W2063137082 cites W2117452769 @default.
- W2063137082 cites W2125335080 @default.
- W2063137082 cites W2133054399 @default.
- W2063137082 cites W2133594110 @default.
- W2063137082 cites W2133863862 @default.
- W2063137082 cites W2139925805 @default.
- W2063137082 cites W2140568951 @default.
- W2063137082 cites W2144524546 @default.
- W2063137082 cites W2154744699 @default.
- W2063137082 cites W2162978906 @default.
- W2063137082 cites W2165269558 @default.
- W2063137082 doi "https://doi.org/10.1016/j.neuroimage.2014.06.068" @default.
- W2063137082 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25008958" @default.
- W2063137082 hasPublicationYear "2014" @default.
- W2063137082 type Work @default.
- W2063137082 sameAs 2063137082 @default.
- W2063137082 citedByCount "17" @default.
- W2063137082 countsByYear W20631370822015 @default.
- W2063137082 countsByYear W20631370822016 @default.
- W2063137082 countsByYear W20631370822018 @default.
- W2063137082 countsByYear W20631370822019 @default.
- W2063137082 countsByYear W20631370822020 @default.
- W2063137082 countsByYear W20631370822021 @default.
- W2063137082 countsByYear W20631370822022 @default.
- W2063137082 countsByYear W20631370822023 @default.
- W2063137082 crossrefType "journal-article" @default.
- W2063137082 hasAuthorship W2063137082A5006794669 @default.
- W2063137082 hasAuthorship W2063137082A5018672621 @default.
- W2063137082 hasAuthorship W2063137082A5025144654 @default.
- W2063137082 hasAuthorship W2063137082A5033619732 @default.
- W2063137082 hasAuthorship W2063137082A5059287667 @default.
- W2063137082 hasAuthorship W2063137082A5081304921 @default.
- W2063137082 hasBestOaLocation W20631370822 @default.
- W2063137082 hasConcept C105795698 @default.
- W2063137082 hasConcept C11413529 @default.
- W2063137082 hasConcept C126838900 @default.
- W2063137082 hasConcept C141379421 @default.
- W2063137082 hasConcept C143409427 @default.
- W2063137082 hasConcept C153180895 @default.
- W2063137082 hasConcept C154945302 @default.
- W2063137082 hasConcept C182081679 @default.
- W2063137082 hasConcept C2779751349 @default.
- W2063137082 hasConcept C2989005 @default.
- W2063137082 hasConcept C31972630 @default.
- W2063137082 hasConcept C33923547 @default.
- W2063137082 hasConcept C41008148 @default.
- W2063137082 hasConcept C49781872 @default.
- W2063137082 hasConcept C54170458 @default.
- W2063137082 hasConcept C71924100 @default.
- W2063137082 hasConcept C89600930 @default.
- W2063137082 hasConcept C9810830 @default.
- W2063137082 hasConceptScore W2063137082C105795698 @default.
- W2063137082 hasConceptScore W2063137082C11413529 @default.
- W2063137082 hasConceptScore W2063137082C126838900 @default.
- W2063137082 hasConceptScore W2063137082C141379421 @default.
- W2063137082 hasConceptScore W2063137082C143409427 @default.
- W2063137082 hasConceptScore W2063137082C153180895 @default.
- W2063137082 hasConceptScore W2063137082C154945302 @default.
- W2063137082 hasConceptScore W2063137082C182081679 @default.
- W2063137082 hasConceptScore W2063137082C2779751349 @default.
- W2063137082 hasConceptScore W2063137082C2989005 @default.
- W2063137082 hasConceptScore W2063137082C31972630 @default.
- W2063137082 hasConceptScore W2063137082C33923547 @default.
- W2063137082 hasConceptScore W2063137082C41008148 @default.
- W2063137082 hasConceptScore W2063137082C49781872 @default.
- W2063137082 hasConceptScore W2063137082C54170458 @default.
- W2063137082 hasConceptScore W2063137082C71924100 @default.
- W2063137082 hasConceptScore W2063137082C89600930 @default.
- W2063137082 hasConceptScore W2063137082C9810830 @default.
- W2063137082 hasLocation W20631370821 @default.
- W2063137082 hasLocation W20631370822 @default.
- W2063137082 hasLocation W20631370823 @default.
- W2063137082 hasOpenAccess W2063137082 @default.