Matches in SemOpenAlex for { <https://semopenalex.org/work/W2063238091> ?p ?o ?g. }
- W2063238091 endingPage "130" @default.
- W2063238091 startingPage "123" @default.
- W2063238091 abstract "High speed trains are currently meant to run faster and to carry heavier loads, while being less energy consuming and still respecting the security and comfort certification criteria. To face these challenges, a better understanding of the interaction between the dynamic train behavior and the track geometry is needed. As during its lifecycle, the train faces a great variability of track conditions, this dynamic behavior has indeed to be characterized on track portions sets that are representative of the whole railway network. This paper is thus devoted to the development of a stochastic modeling of the track geometry and its identification with experimental measurements. Based on a spatial and statistical decomposition, this model allows the spatial and statistical variability and dependency of the track geometry to be taken into account. Moreover, it allows the generation of realistic track geometries that are representative of a whole railway network. First, this paper describes a practical implementation of the proposed method and then applies this method to the modeling of a particular French high speed line, for which experimental data are available." @default.
- W2063238091 created "2016-06-24" @default.
- W2063238091 creator A5003805312 @default.
- W2063238091 creator A5031300615 @default.
- W2063238091 creator A5032363972 @default.
- W2063238091 creator A5054773710 @default.
- W2063238091 date "2013-10-01" @default.
- W2063238091 modified "2023-10-03" @default.
- W2063238091 title "Track irregularities stochastic modeling" @default.
- W2063238091 cites W1966109017 @default.
- W2063238091 cites W1976426078 @default.
- W2063238091 cites W1976942431 @default.
- W2063238091 cites W1984943006 @default.
- W2063238091 cites W1988235704 @default.
- W2063238091 cites W1989951672 @default.
- W2063238091 cites W1992033071 @default.
- W2063238091 cites W2003245947 @default.
- W2063238091 cites W2016183969 @default.
- W2063238091 cites W2017880874 @default.
- W2063238091 cites W2019680819 @default.
- W2063238091 cites W2020203290 @default.
- W2063238091 cites W2028195074 @default.
- W2063238091 cites W2029940997 @default.
- W2063238091 cites W2032558547 @default.
- W2063238091 cites W2034841271 @default.
- W2063238091 cites W2043413083 @default.
- W2063238091 cites W2045837122 @default.
- W2063238091 cites W2054768786 @default.
- W2063238091 cites W2062993069 @default.
- W2063238091 cites W2068594973 @default.
- W2063238091 cites W2074686342 @default.
- W2063238091 cites W2078278184 @default.
- W2063238091 cites W2080908214 @default.
- W2063238091 cites W2086140935 @default.
- W2063238091 cites W2092189481 @default.
- W2063238091 cites W2095161219 @default.
- W2063238091 cites W2112823474 @default.
- W2063238091 cites W2121376805 @default.
- W2063238091 cites W2124090441 @default.
- W2063238091 cites W2135208466 @default.
- W2063238091 cites W2136284614 @default.
- W2063238091 cites W2152067874 @default.
- W2063238091 cites W2170880683 @default.
- W2063238091 cites W2294798173 @default.
- W2063238091 cites W2321957512 @default.
- W2063238091 doi "https://doi.org/10.1016/j.probengmech.2013.08.006" @default.
- W2063238091 hasPublicationYear "2013" @default.
- W2063238091 type Work @default.
- W2063238091 sameAs 2063238091 @default.
- W2063238091 citedByCount "57" @default.
- W2063238091 countsByYear W20632380912014 @default.
- W2063238091 countsByYear W20632380912015 @default.
- W2063238091 countsByYear W20632380912016 @default.
- W2063238091 countsByYear W20632380912017 @default.
- W2063238091 countsByYear W20632380912018 @default.
- W2063238091 countsByYear W20632380912019 @default.
- W2063238091 countsByYear W20632380912020 @default.
- W2063238091 countsByYear W20632380912021 @default.
- W2063238091 countsByYear W20632380912022 @default.
- W2063238091 countsByYear W20632380912023 @default.
- W2063238091 crossrefType "journal-article" @default.
- W2063238091 hasAuthorship W2063238091A5003805312 @default.
- W2063238091 hasAuthorship W2063238091A5031300615 @default.
- W2063238091 hasAuthorship W2063238091A5032363972 @default.
- W2063238091 hasAuthorship W2063238091A5054773710 @default.
- W2063238091 hasBestOaLocation W20632380912 @default.
- W2063238091 hasConcept C111919701 @default.
- W2063238091 hasConcept C11413529 @default.
- W2063238091 hasConcept C116834253 @default.
- W2063238091 hasConcept C154945302 @default.
- W2063238091 hasConcept C190839683 @default.
- W2063238091 hasConcept C19768560 @default.
- W2063238091 hasConcept C205649164 @default.
- W2063238091 hasConcept C2780899546 @default.
- W2063238091 hasConcept C41008148 @default.
- W2063238091 hasConcept C44154836 @default.
- W2063238091 hasConcept C58640448 @default.
- W2063238091 hasConcept C59822182 @default.
- W2063238091 hasConcept C86803240 @default.
- W2063238091 hasConcept C89992363 @default.
- W2063238091 hasConceptScore W2063238091C111919701 @default.
- W2063238091 hasConceptScore W2063238091C11413529 @default.
- W2063238091 hasConceptScore W2063238091C116834253 @default.
- W2063238091 hasConceptScore W2063238091C154945302 @default.
- W2063238091 hasConceptScore W2063238091C190839683 @default.
- W2063238091 hasConceptScore W2063238091C19768560 @default.
- W2063238091 hasConceptScore W2063238091C205649164 @default.
- W2063238091 hasConceptScore W2063238091C2780899546 @default.
- W2063238091 hasConceptScore W2063238091C41008148 @default.
- W2063238091 hasConceptScore W2063238091C44154836 @default.
- W2063238091 hasConceptScore W2063238091C58640448 @default.
- W2063238091 hasConceptScore W2063238091C59822182 @default.
- W2063238091 hasConceptScore W2063238091C86803240 @default.
- W2063238091 hasConceptScore W2063238091C89992363 @default.
- W2063238091 hasLocation W20632380911 @default.
- W2063238091 hasLocation W20632380912 @default.
- W2063238091 hasLocation W20632380913 @default.
- W2063238091 hasLocation W20632380914 @default.