Matches in SemOpenAlex for { <https://semopenalex.org/work/W2063348135> ?p ?o ?g. }
- W2063348135 endingPage "3330" @default.
- W2063348135 startingPage "3321" @default.
- W2063348135 abstract "CONSPECTUS: In chemical and biological systems, various interactions that govern the chemical and physical properties of molecules, assembling phenomena, and electronic transport properties compete and control the microscopic structure of materials. The well-controlled manipulation of each component can allow researchers to design receptors or sensors, new molecular architectures, structures with novel morphology, and functional molecules or devices. In this Account, we describe the structures and electronic and spintronic properties of π-molecular systems that are important for controlling the architecture of a variety of carbon-based systems. Although DFT is an important tool for describing molecular interactions, the inability of DFT to accurately represent dispersion interactions has made it difficult to properly describe π-interactions. However, the recently developed dispersion corrections for DFT have allowed us to include these dispersion interactions cost-effectively. We have investigated noncovalent interactions of various π-systems including aromatic-π, aliphatic-π, and non-π systems based on dispersion-corrected DFT (DFT-D). In addition, we have addressed the validity of DFT-D compared with the complete basis set (CBS) limit values of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and Møller-Plesset second order perturbation theory (MP2). The DFT-D methods are still unable to predict the correct ordering in binding energies within the benzene dimer and the cyclohexane dimer. Nevertheless, the overall DFT-D predicted binding energies are in reasonable agreement with the CCSD(T) results. In most cases, results using the B97-D3 method closely reproduce the CCSD(T) results with the optimized energy-fitting parameters. On the other hand, vdW-DF2 and PBE0-TS methods estimate the dispersion energies from the calculated electron density. In these approximations, the interaction energies around the equilibrium point are reasonably close to the CCSD(T) results but sometimes slightly deviate from them because interaction energies were not particularly optimized with parameters. Nevertheless, because the electron cloud deforms when neighboring atoms/ions induce an electric field, both vdW-DF2 and PBE0-TS seem to properly reproduce the resulting change of dispersion interaction. Thus, improvements are needed in both vdW-DF2 and PBE0-TS to better describe the interaction energies, while the B97-D3 method could benefit from the incorporation of polarization-driven energy changes that show highly anisotropic behavior. Although the current DFT-D methods need further improvement, DFT-D is very useful for computer-aided molecular design. We have used these newly developed DFT-D methods to calculate the interactions between graphene and DNA nucleobases. Using DFT-D, we describe the design of molecular receptors of π-systems, graphene based electronic devices, metalloporphyrin half-metal based spintronic devices as graphene nanoribbon (GNR) analogs, and graphene based molecular electronic devices for DNA sequencing. DFT-D has also helped us understand quantum phenomena in materials and devices of π-systems including graphene." @default.
- W2063348135 created "2016-06-24" @default.
- W2063348135 creator A5006345045 @default.
- W2063348135 creator A5057681381 @default.
- W2063348135 creator A5087462383 @default.
- W2063348135 creator A5090262080 @default.
- W2063348135 creator A5091615384 @default.
- W2063348135 creator A5091836961 @default.
- W2063348135 date "2014-10-22" @default.
- W2063348135 modified "2023-10-16" @default.
- W2063348135 title "Density Functional Theory Based Study of Molecular Interactions, Recognition, Engineering, and Quantum Transport in π Molecular Systems" @default.
- W2063348135 cites W1563609065 @default.
- W2063348135 cites W1965860963 @default.
- W2063348135 cites W1970623278 @default.
- W2063348135 cites W1971338405 @default.
- W2063348135 cites W1975212458 @default.
- W2063348135 cites W1980299655 @default.
- W2063348135 cites W1982595063 @default.
- W2063348135 cites W1983462489 @default.
- W2063348135 cites W1984325628 @default.
- W2063348135 cites W1986801254 @default.
- W2063348135 cites W1988320534 @default.
- W2063348135 cites W1989391881 @default.
- W2063348135 cites W1990619503 @default.
- W2063348135 cites W1991803574 @default.
- W2063348135 cites W1996681043 @default.
- W2063348135 cites W2001508813 @default.
- W2063348135 cites W2003193361 @default.
- W2063348135 cites W2004660376 @default.
- W2063348135 cites W2009688653 @default.
- W2063348135 cites W2018181242 @default.
- W2063348135 cites W2019901344 @default.
- W2063348135 cites W2020072134 @default.
- W2063348135 cites W2020618854 @default.
- W2063348135 cites W2030601089 @default.
- W2063348135 cites W2037570317 @default.
- W2063348135 cites W2039512892 @default.
- W2063348135 cites W2049275650 @default.
- W2063348135 cites W2050890227 @default.
- W2063348135 cites W2055563809 @default.
- W2063348135 cites W2056256630 @default.
- W2063348135 cites W2057512682 @default.
- W2063348135 cites W2059885388 @default.
- W2063348135 cites W2062919836 @default.
- W2063348135 cites W2068006264 @default.
- W2063348135 cites W2071955309 @default.
- W2063348135 cites W2076293888 @default.
- W2063348135 cites W2081065068 @default.
- W2063348135 cites W2090082574 @default.
- W2063348135 cites W2092157292 @default.
- W2063348135 cites W2096747776 @default.
- W2063348135 cites W2111705896 @default.
- W2063348135 cites W2113968471 @default.
- W2063348135 cites W2150697053 @default.
- W2063348135 cites W2156886820 @default.
- W2063348135 cites W2166691312 @default.
- W2063348135 cites W2169802997 @default.
- W2063348135 cites W2312584953 @default.
- W2063348135 cites W2316928488 @default.
- W2063348135 cites W2322770950 @default.
- W2063348135 cites W2324016180 @default.
- W2063348135 cites W2330263970 @default.
- W2063348135 cites W2333086966 @default.
- W2063348135 doi "https://doi.org/10.1021/ar400326q" @default.
- W2063348135 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25338296" @default.
- W2063348135 hasPublicationYear "2014" @default.
- W2063348135 type Work @default.
- W2063348135 sameAs 2063348135 @default.
- W2063348135 citedByCount "50" @default.
- W2063348135 countsByYear W20633481352015 @default.
- W2063348135 countsByYear W20633481352016 @default.
- W2063348135 countsByYear W20633481352017 @default.
- W2063348135 countsByYear W20633481352018 @default.
- W2063348135 countsByYear W20633481352019 @default.
- W2063348135 countsByYear W20633481352020 @default.
- W2063348135 countsByYear W20633481352021 @default.
- W2063348135 countsByYear W20633481352022 @default.
- W2063348135 countsByYear W20633481352023 @default.
- W2063348135 crossrefType "journal-article" @default.
- W2063348135 hasAuthorship W2063348135A5006345045 @default.
- W2063348135 hasAuthorship W2063348135A5057681381 @default.
- W2063348135 hasAuthorship W2063348135A5087462383 @default.
- W2063348135 hasAuthorship W2063348135A5090262080 @default.
- W2063348135 hasAuthorship W2063348135A5091615384 @default.
- W2063348135 hasAuthorship W2063348135A5091836961 @default.
- W2063348135 hasBestOaLocation W20633481351 @default.
- W2063348135 hasConcept C112887158 @default.
- W2063348135 hasConcept C121332964 @default.
- W2063348135 hasConcept C121864883 @default.
- W2063348135 hasConcept C137277065 @default.
- W2063348135 hasConcept C147597530 @default.
- W2063348135 hasConcept C152365726 @default.
- W2063348135 hasConcept C159467904 @default.
- W2063348135 hasConcept C174256460 @default.
- W2063348135 hasConcept C177562468 @default.
- W2063348135 hasConcept C185592680 @default.
- W2063348135 hasConcept C19637589 @default.
- W2063348135 hasConcept C32909587 @default.