Matches in SemOpenAlex for { <https://semopenalex.org/work/W2063359097> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2063359097 endingPage "e213" @default.
- W2063359097 startingPage "e213" @default.
- W2063359097 abstract "Mutations are ubiquitous, and many arise during the very process of replicating and transmitting genomes. This process is the source of the genetic variation that provides the raw material for both evolutionary novelty and human disease. Mutation rates are known to vary among nucleotides, across genomic regions, and between taxa. It is conventional wisdom that animal mitochondrial DNA (mtDNA) is one genomic region that has a particularly high mutation rate. Until recently, this high rate of mutation has been predominantly inferred from high levels of mitochondrial sequence divergence between species. However, the apparently simple process of mutation and sequence divergence is intriguingly complex in mitochondria, due to the unique biology of these extrachromosomal genomes.Unlike nuclear DNA, where a new mutation arises on one of four possible DNA strands that can be passed to a diploid offspring, a new mtDNA mutation exists on one of many thousands of mtDNA strands that might (or might not) get incorporated into an egg. With a complex cellular pedigree of mtDNA molecules per mitochondrion, mitochondria per egg cell, egg cells per female, and an even more complex pedigree of females per population, it is a complicated path from mtDNA mutation to fixed mtDNA difference between species [1]. The basic biology of this problem was sketched out more than 30 years ago in a pioneering study of mtDNA sequence variation in sheep and goats by Upholt and Dawid [2]. They recognized the clonal nature of mtDNA inheritance, the random drift process acting on mutations within cytoplasms, and the likelihood that mutations may contribute to variation within species but not become fixed substitutions between species. In short order, mtDNA became a powerful tool of population and evolutionary biologists when it was realized that the rapid rate of mitochondrial mutation and evolution was useful for evolutionary inference [3,4]. In the mid-1980s, mtDNA mutations became candidates for human disease as several papers attributed a variety of disorders to specific point mutations and deletions in the mitochondrial genome [5–7].In the ensuing years, mutation in the mitochondrial genome has been studied intensively by two different camps: evolutionary biologists, who assumed that mtDNA mutations had no significant functional effects and would serve as reliable neutral markers, and molecular and cell biologists, who saw mtDNA mutations as an underappreciated source of human pathologies. However, it is becoming increasingly popular to apply evolutionary models to problems in mitochondrial disease [8,9] and to examine molecular mechanisms of mutation among strains of model organisms that have been allowed to mutate and evolve in the lab. What we are learning after three decades of extensive study is that the spectrum of mitochondrial mutations varies widely across taxa, with important consequences for the mutation-selection balance maintaining nucleotide composition. However, a new flurry of papers quantifying mitochondrial mutation rates in mutation accumulation studies across model organisms is showing us just how much we still have to learn about mtDNA mutation, variation, and evolution." @default.
- W2063359097 created "2016-06-24" @default.
- W2063359097 creator A5041097296 @default.
- W2063359097 creator A5089550120 @default.
- W2063359097 date "2008-08-26" @default.
- W2063359097 modified "2023-10-16" @default.
- W2063359097 title "The Spectrum of Mitochondrial Mutation Differs across Species" @default.
- W2063359097 cites W1511771787 @default.
- W2063359097 cites W1811556804 @default.
- W2063359097 cites W1965636701 @default.
- W2063359097 cites W1968952472 @default.
- W2063359097 cites W1971398167 @default.
- W2063359097 cites W1988297489 @default.
- W2063359097 cites W2001592289 @default.
- W2063359097 cites W2017347785 @default.
- W2063359097 cites W2018185503 @default.
- W2063359097 cites W2042191922 @default.
- W2063359097 cites W2061574765 @default.
- W2063359097 cites W2065754918 @default.
- W2063359097 cites W2077414996 @default.
- W2063359097 cites W2093016244 @default.
- W2063359097 cites W2094832206 @default.
- W2063359097 cites W2105754268 @default.
- W2063359097 cites W2115854588 @default.
- W2063359097 cites W2116398302 @default.
- W2063359097 cites W2126204254 @default.
- W2063359097 cites W2126606792 @default.
- W2063359097 cites W2141602140 @default.
- W2063359097 cites W2145406188 @default.
- W2063359097 cites W2145802742 @default.
- W2063359097 cites W2147322476 @default.
- W2063359097 cites W2158380961 @default.
- W2063359097 cites W2161309712 @default.
- W2063359097 cites W2162967657 @default.
- W2063359097 cites W2163002674 @default.
- W2063359097 cites W2170946953 @default.
- W2063359097 doi "https://doi.org/10.1371/journal.pbio.0060213" @default.
- W2063359097 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2525688" @default.
- W2063359097 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18752353" @default.
- W2063359097 hasPublicationYear "2008" @default.
- W2063359097 type Work @default.
- W2063359097 sameAs 2063359097 @default.
- W2063359097 citedByCount "49" @default.
- W2063359097 countsByYear W20633590972012 @default.
- W2063359097 countsByYear W20633590972013 @default.
- W2063359097 countsByYear W20633590972014 @default.
- W2063359097 countsByYear W20633590972015 @default.
- W2063359097 countsByYear W20633590972017 @default.
- W2063359097 countsByYear W20633590972018 @default.
- W2063359097 countsByYear W20633590972019 @default.
- W2063359097 countsByYear W20633590972020 @default.
- W2063359097 countsByYear W20633590972021 @default.
- W2063359097 countsByYear W20633590972022 @default.
- W2063359097 countsByYear W20633590972023 @default.
- W2063359097 crossrefType "journal-article" @default.
- W2063359097 hasAuthorship W2063359097A5041097296 @default.
- W2063359097 hasAuthorship W2063359097A5089550120 @default.
- W2063359097 hasBestOaLocation W20633590971 @default.
- W2063359097 hasConcept C104317684 @default.
- W2063359097 hasConcept C24586158 @default.
- W2063359097 hasConcept C501734568 @default.
- W2063359097 hasConcept C54355233 @default.
- W2063359097 hasConcept C78458016 @default.
- W2063359097 hasConcept C86803240 @default.
- W2063359097 hasConceptScore W2063359097C104317684 @default.
- W2063359097 hasConceptScore W2063359097C24586158 @default.
- W2063359097 hasConceptScore W2063359097C501734568 @default.
- W2063359097 hasConceptScore W2063359097C54355233 @default.
- W2063359097 hasConceptScore W2063359097C78458016 @default.
- W2063359097 hasConceptScore W2063359097C86803240 @default.
- W2063359097 hasIssue "8" @default.
- W2063359097 hasLocation W20633590971 @default.
- W2063359097 hasLocation W20633590972 @default.
- W2063359097 hasLocation W20633590973 @default.
- W2063359097 hasLocation W20633590974 @default.
- W2063359097 hasLocation W20633590975 @default.
- W2063359097 hasOpenAccess W2063359097 @default.
- W2063359097 hasPrimaryLocation W20633590971 @default.
- W2063359097 hasRelatedWork W1641042124 @default.
- W2063359097 hasRelatedWork W1986496784 @default.
- W2063359097 hasRelatedWork W1990804418 @default.
- W2063359097 hasRelatedWork W1993764875 @default.
- W2063359097 hasRelatedWork W2013243191 @default.
- W2063359097 hasRelatedWork W2028961943 @default.
- W2063359097 hasRelatedWork W2052110052 @default.
- W2063359097 hasRelatedWork W2061542922 @default.
- W2063359097 hasRelatedWork W2082860237 @default.
- W2063359097 hasRelatedWork W2130076355 @default.
- W2063359097 hasVolume "6" @default.
- W2063359097 isParatext "false" @default.
- W2063359097 isRetracted "false" @default.
- W2063359097 magId "2063359097" @default.
- W2063359097 workType "article" @default.