Matches in SemOpenAlex for { <https://semopenalex.org/work/W2063431502> ?p ?o ?g. }
- W2063431502 endingPage "2737" @default.
- W2063431502 startingPage "2733" @default.
- W2063431502 abstract "Thrombotic thrombocytopenic purpura (TTP) is characterized by thrombocytopenia, hemolytic anemia, and microvascular thrombosis with ischemic injury to organs. Development of classic TTP is related to the impairment of the activity of ADAMTS‐13, a key metalloprotease that cleaves von Willebrand factor (VWF) multimers and prevents VWF‐induced platelet thrombosis [1George J.N. Clinical practice. Thrombotic thrombocytopenic purpura.N Engl J Med. 2006; 354: 1927-35Crossref PubMed Scopus (442) Google Scholar, 2Moake J.L. Thrombotic microangiopathies.N Engl J Med. 2002; 347: 589-600Crossref PubMed Scopus (1129) Google Scholar, 3Sadler J.E. Moake J.L. Miyata T. George J.N. Recent advances in thrombotic thrombocytopenic purpura.Hematology (Am Soc Hematol Educ Program). 2004; : 407-23Crossref PubMed Scopus (281) Google Scholar, 4Dong J.F. Moake J.L. Nolasco L. Bernardo A. Arceneaux W. Shrimpton C.N. Schade A.J. McIntire L.V. Fujikawa K. Lopez J.A. ADAMTS‐13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions.Blood. 2002; 100: 4033-9Crossref PubMed Scopus (0) Google Scholar]. Lack of ADAMTS‐13 activity can be caused either by a rare hereditary deficiency or by acquired autoantibodies that specifically inhibit ADAMTS‐13 function [5Furlan M. Robles R. Galbusera M. Remuzzi G. Kyrle P.A. Brenner B. Krause M. Scharrer I. Aumann V. Mittler U. Solenthaler M. Lammle B. von Willebrand factor‐cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic‐uremic syndrome.N Engl J Med. 1998; 339: 1578-84Crossref PubMed Scopus (0) Google Scholar, 6Tsai H.M. Lian E.C. Antibodies to von Willebrand factor‐cleaving protease in acute thrombotic thrombocytopenic purpura.N Engl J Med. 1998; 339: 1585-94Crossref PubMed Scopus (0) Google Scholar]. The majority of clinically observed adult TTP patients are immune acquired cases [3Sadler J.E. Moake J.L. Miyata T. George J.N. Recent advances in thrombotic thrombocytopenic purpura.Hematology (Am Soc Hematol Educ Program). 2004; : 407-23Crossref PubMed Scopus (281) Google Scholar, 6Tsai H.M. Lian E.C. Antibodies to von Willebrand factor‐cleaving protease in acute thrombotic thrombocytopenic purpura.N Engl J Med. 1998; 339: 1585-94Crossref PubMed Scopus (0) Google Scholar, 7George J.N. Sadler J.E. Lammle B. Platelets: thrombotic thrombocytopenic purpura.Hematology. 2002; : 315-34Crossref Scopus (72) Google Scholar, 8Tsai H.M. Platelet activation and the formation of the platelet plug: deficiency of ADAMTS13 causes thrombotic thrombocytopenic purpura.Arterioscler Thromb Vasc Biol. 2003; 23: 388-96Crossref PubMed Scopus (0) Google Scholar, 9Vesely S.K. George J.N. Lammle B. Studt J.D. Alberio L. El‐Harake M.A. Raskob G.E. ADAMTS13 activity in thrombotic thrombocytopenic purpura‐hemolytic uremic syndrome: relation to presenting features and clinical outcomes in a prospective cohort of 142 patients.Blood. 2003; 102: 60-8Crossref PubMed Scopus (0) Google Scholar], with patients showing detectable levels of autoantibodies to ADAMTS‐13. Patients exhibiting immune acquired TTP, also termed idiopathic TTP, usually respond well to plasma exchange (PE) therapy. There is a range of clinical conditions that trigger the onset of acute TTP. These include pregnancy [10May Jr, H.V. Harbert Jr, G.M. Thornton Jr, W.N. Thrombotic thrombocytopenic purpura associated with pregnancy.Am J Obstet Gynecol. 1976; 126: 452-8Abstract Full Text PDF PubMed Google Scholar, 11Caggiano V. Fernando L.P. Schneider J.M. Haesslein H.C. Watson‐Williams E.J. Thrombotic thrombocytopenic purpura: report of fourteen cases–occurrence during pregnancy and response to plasma exchange.J Clin Apher. 1983; 1: 71-85Crossref PubMed Google Scholar, 12Upshaw Jr, J.D. Reidy T.J. Groshart K. Thrombotic thrombocytopenic purpura in pregnancy: response to plasma manipulations.South Med J. 1985; 78: 677-80Crossref PubMed Google Scholar, 13Natelson E.A. White D. Recurrent thrombotic thrombocytopenic purpura in early pregnancy: effect of uterine evacuation.Obstet Gynecol. 1985; 66: 54S-6SPubMed Google Scholar], infection [14Niv E. Segev A. Ellis M.H. Staphylococcus aureus bacteremia as a cause of early relapse of thrombotic thrombocytopenic purpura.Transfusion. 2000; 40: 1067-70Crossref PubMed Scopus (0) Google Scholar, 15Coppo P. Adrie C. Azoulay E. Leleu G. Oksenhendler E. Galicier L. Le Gall J.R. Bussel A. Schlemmer B. Infectious diseases as a trigger in thrombotic microangiopathies in intensive care unit (ICU) patients.Intensive Care Med. 2003; 29: 564-9Crossref PubMed Scopus (0) Google Scholar, 16Riegert‐Johnson D.L. Sandhu N. Rajkumar S.V. Patel R. Thrombotic thrombocytopenic purpura associated with a hepatic abscess due to Actinomyces turicensis.Clin Infect Dis. 2002; 35: 636-7Crossref Scopus (14) Google Scholar], pancreatitis [17Muniz A.E. Barbee R.W. Thrombotic thrombocytopenic purpura (TTP) presenting as pancreatitis.J Emerg Med. 2003; 24: 407-11Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 18Talwalkar J.A. Ruymann F.W. Marcoux P. Farraye F.A. Recurrent thrombotic thrombocytopenic purpura (TTP) as a complication of acute relapsing pancreatitis.Dig Dis Sci. 2002; 47: 1096-9Crossref PubMed Scopus (0) Google Scholar, 19Varadarajulu S. Ramsey W.H. Israel R.H. Thrombotic thrombocytopenic purpura in acute pancreatitis.J Clin Gastroenterol. 2000; 31: 243-5Crossref PubMed Scopus (0) Google Scholar, 20Daryanani S. Wilde J.T. Relapsing thrombotic thrombocytopenic purpura in association with recurrent pancreatitis.Clin Lab Haematol. 1998; 20: 317-8Crossref PubMed Scopus (0) Google Scholar, 21Jackson B. Files J.C. Morrison F.S. Scott‐Conner C.E. Thrombotic thrombocytopenic purpura and pancreatitis.Am J Gastroenterol. 1989; 84: 667-9PubMed Google Scholar, 22Boyer A. Chadda K. Salah A. Bonmarchand G. Thrombotic microangiopathy: an atypical cause of acute renal failure in patients with acute pancreatitis.Intensive Care Med. 2004; 30: 1235-9Crossref PubMed Scopus (0) Google Scholar, 23Ruiz J. Koduri P.R. Valdivieso M. Shah P.C. Refractory post‐pancreatitis thrombotic thrombocytopenic purpura: response to rituximab.Ann Hematol. 2005; 84: 267-8Crossref PubMed Scopus (0) Google Scholar], malignancy [24Forman R.B. Benkel S.A. Novik Y. Tsai H.M. Presence of ADAMTS13 activity in a patient with metastatic cancer and thrombotic microangiopathy.Acta Haematol. 2003; 109: 150-2Crossref PubMed Scopus (0) Google Scholar, 25Pirrotta M.T. Bucalossi A. Forconi F. Bocchia M. Mazzotta S. Sammassimo S. Gozzetti A. Lauria F. Thrombotic thrombocytopenic purpura secondary to an occult adenocarcinoma.Oncologist. 2005; 10: 299-300Crossref Scopus (20) Google Scholar, 26Sugimoto T. Saigo K. Shin T. Kaneda Y. Manabe N. Narita H. Wakuya J. Imoto S. Murayama T. Matsumoto M. Fujimura Y. Nishimura R. Koizumi T. Kumagai S. Von Willebrand factor‐cleaving protease activity remains at the intermediate level in thrombotic thrombocytopenic purpura.Acta Haematol. 2005; 113: 198-203Crossref Scopus (5) Google Scholar, 27Zheng X.L. Kaufman R.M. Goodnough L.T. Sadler J.E. Effect of plasma exchange on plasma ADAMTS13 metalloprotease activity, inhibitor level, and clinical outcome in patients with idiopathic and nonidiopathic thrombotic thrombocytopenic purpura.Blood. 2004; 103: 4043-9Crossref PubMed Scopus (380) Google Scholar, 28Wolff D. Brinkmann B. Emmrich J. Steiner M. Metastatic pancreatic carcinoma presenting as thrombotic thrombocytopenic purpura.Pancreas. 2003; 26: 314Crossref Scopus (6) Google Scholar, 29Alexopoulou A. Dourakis S.P. Nomikou E. Case of thrombotic thrombocytopenic purpura associated with disseminated gastric cancer.Am J Clin Oncol. 2002; 25: 632Crossref Scopus (5) Google Scholar, 30Blot E. Decaudin D. Veyradier A. Bardier A. Zagame O.L. Pouillart P. Cancer‐related thrombotic microangiopathy secondary to Von Willebrand factor‐cleaving protease deficiency.Thromb Res. 2002; 106: 127-30Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 31Robson M.G. Abbs I.C. Thrombotic thrombocytopenic purpura following hemicolectomy for colonic carcinoma.Nephrol Dial Transplant. 1997; 12: 198-9Crossref PubMed Scopus (0) Google Scholar] and surgery [32Pavlovsky M. Weinstein R. Thrombotic thrombocytopenic purpura following coronary artery bypass graft surgery: prospective observations of an emerging syndrome.J Clin Apher. 1997; 12: 159-64Crossref PubMed Scopus (0) Google Scholar]. Clinically, distinguishing TTP from the underlying morbidity is sometimes challenging. The correct and prompt identification of TTP enables clinicians to quickly initiate PE therapy. It is well‐known that patients with a metastatic malignancy can present with a clinical picture similar to TTP [24Forman R.B. Benkel S.A. Novik Y. Tsai H.M. Presence of ADAMTS13 activity in a patient with metastatic cancer and thrombotic microangiopathy.Acta Haematol. 2003; 109: 150-2Crossref PubMed Scopus (0) Google Scholar, 25Pirrotta M.T. Bucalossi A. Forconi F. Bocchia M. Mazzotta S. Sammassimo S. Gozzetti A. Lauria F. Thrombotic thrombocytopenic purpura secondary to an occult adenocarcinoma.Oncologist. 2005; 10: 299-300Crossref Scopus (20) Google Scholar, 26Sugimoto T. Saigo K. Shin T. Kaneda Y. Manabe N. Narita H. Wakuya J. Imoto S. Murayama T. Matsumoto M. Fujimura Y. Nishimura R. Koizumi T. Kumagai S. Von Willebrand factor‐cleaving protease activity remains at the intermediate level in thrombotic thrombocytopenic purpura.Acta Haematol. 2005; 113: 198-203Crossref Scopus (5) Google Scholar, 27Zheng X.L. Kaufman R.M. Goodnough L.T. Sadler J.E. Effect of plasma exchange on plasma ADAMTS13 metalloprotease activity, inhibitor level, and clinical outcome in patients with idiopathic and nonidiopathic thrombotic thrombocytopenic purpura.Blood. 2004; 103: 4043-9Crossref PubMed Scopus (380) Google Scholar, 28Wolff D. Brinkmann B. Emmrich J. Steiner M. Metastatic pancreatic carcinoma presenting as thrombotic thrombocytopenic purpura.Pancreas. 2003; 26: 314Crossref Scopus (6) Google Scholar, 29Alexopoulou A. Dourakis S.P. Nomikou E. Case of thrombotic thrombocytopenic purpura associated with disseminated gastric cancer.Am J Clin Oncol. 2002; 25: 632Crossref Scopus (5) Google Scholar, 30Blot E. Decaudin D. Veyradier A. Bardier A. Zagame O.L. Pouillart P. Cancer‐related thrombotic microangiopathy secondary to Von Willebrand factor‐cleaving protease deficiency.Thromb Res. 2002; 106: 127-30Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 31Robson M.G. Abbs I.C. Thrombotic thrombocytopenic purpura following hemicolectomy for colonic carcinoma.Nephrol Dial Transplant. 1997; 12: 198-9Crossref PubMed Scopus (0) Google Scholar]. This frequently occurs following chemotherapy in patients with solid tumors [33Snyder Jr, H.W. Mittelman A. Oral A. Messerschmidt G.L. Henry D.H. Korec S. Bertram J.H. Guthrie Jr, T.H. Ciavarella D. Wuest D. Perkins W. Balint Jr J.P. Cochran S.K. Peugeot R.L. Jones F.R. Treatment of cancer chemotherapy‐associated thrombotic thrombocytopenic purpura/hemolytic uremic syndrome by protein A immunoadsorption of plasma.Cancer. 1993; 71: 1882-92Crossref PubMed Google Scholar, 34Armstrong M.J. Storch J. Dainiak N. Structurally distinct plasma membrane regions give rise to extracellular membrane vesicles in normal and transformed lymphocytes.Biochimica et Biophysica Acta. 1988; 946: 106-12Crossref PubMed Google Scholar]. These patients usually have a poor prognosis and do not respond to PE therapy [24Forman R.B. Benkel S.A. Novik Y. Tsai H.M. Presence of ADAMTS13 activity in a patient with metastatic cancer and thrombotic microangiopathy.Acta Haematol. 2003; 109: 150-2Crossref PubMed Scopus (0) Google Scholar, 35Qu L. Kiss J.E. Thrombotic microangiopathy in transplantation and malignancy.Semin Thromb Hemost. 2005; 31: 691-9Crossref PubMed Scopus (0) Google Scholar, 36Teruya J. Styler M. Verde S. Topolsky D. Crilley P. Questionable efficacy of plasma exchange for thrombotic thrombocytopenic purpura after bone marrow transplantation.J Clin Apher. 2001; 16: 169-74Crossref PubMed Scopus (0) Google Scholar]. In most cases, they have either normal or intermediate levels of ADAMTS‐13 activity, but not severely deficient ADAMTS‐13 activity [24Forman R.B. Benkel S.A. Novik Y. Tsai H.M. Presence of ADAMTS13 activity in a patient with metastatic cancer and thrombotic microangiopathy.Acta Haematol. 2003; 109: 150-2Crossref PubMed Scopus (0) Google Scholar, 25Pirrotta M.T. Bucalossi A. Forconi F. Bocchia M. Mazzotta S. Sammassimo S. Gozzetti A. Lauria F. Thrombotic thrombocytopenic purpura secondary to an occult adenocarcinoma.Oncologist. 2005; 10: 299-300Crossref Scopus (20) Google Scholar, 26Sugimoto T. Saigo K. Shin T. Kaneda Y. Manabe N. Narita H. Wakuya J. Imoto S. Murayama T. Matsumoto M. Fujimura Y. Nishimura R. Koizumi T. Kumagai S. Von Willebrand factor‐cleaving protease activity remains at the intermediate level in thrombotic thrombocytopenic purpura.Acta Haematol. 2005; 113: 198-203Crossref Scopus (5) Google Scholar, 27Zheng X.L. Kaufman R.M. Goodnough L.T. Sadler J.E. Effect of plasma exchange on plasma ADAMTS13 metalloprotease activity, inhibitor level, and clinical outcome in patients with idiopathic and nonidiopathic thrombotic thrombocytopenic purpura.Blood. 2004; 103: 4043-9Crossref PubMed Scopus (380) Google Scholar, 37Peyvandi F. Siboni S.M. Lambertenghi Deliliers D. Lavoretano S. De Fazio N. Moroni B. Lambertenghi Deliliers G. Mannuccio Mannucci P. Prospective study on the behaviour of the metalloprotease ADAMTS13 and of von Willebrand factor after bone marrow transplantation.Br J Haematol. 2006; 134: 187-95Crossref PubMed Scopus (47) Google Scholar, 38Fontana S. Gerritsen H.E. Kremer Hovinga J. Furlan M. Lammle B. Microangiopathic haemolytic anaemia in metastasizing malignant tumours is not associated with a severe deficiency of the von Willebrand factor‐cleaving protease.Br J Haematol. 2001; 113: 100-2Crossref PubMed Scopus (0) Google Scholar]. However, one study reported a possible case of congenital TTP that was triggered by disseminated metastatic cancer [30Blot E. Decaudin D. Veyradier A. Bardier A. Zagame O.L. Pouillart P. Cancer‐related thrombotic microangiopathy secondary to Von Willebrand factor‐cleaving protease deficiency.Thromb Res. 2002; 106: 127-30Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar]. This patient was reported to have an undetectable level of ADAMTS‐13 activity, but without evidence of ADAMTS‐13 antibody inhibitor. Here, we report a case of idiopathic TTP that occurred shortly after surgical removal of a glioblastoma multiforme. The patient was a 54‐year‐old white female. Her past medical history was significant for diabetes mellitus, hypertension and history of ovarian cancer. She was status post a total hysterectomy and bilateral salpingo‐oophorectomy 6 years ago without evidence of recurrent disease. The patient progressed well until she began to suffer from frequent seizures and subsequently from increasing right‐sided weakness. An MRI was performed that confirmed a tumor mass in her left frontal lobe. She underwent frontal craniotomy with resection of an irregular tumor mass sized 2.9 × 4.5 cm with a final pathological diagnosis of glioblastoma multiforme. The patient did well postoperatively without surgical complications and showed significant neurological improvement. Her platelet count remained normal for the first 4 days after surgery. On postoperative day 5, she was noted to have a sudden platelet count drop to 11 without a clear explanation. Further workup demonstrated a lactate dehydrogenase (LDH) level of 2049 U L−1, a hemoglobin level of 4.8 g dL−1, a haptoglobin level of < 6 and an elevated indirect bilirubin, and her peripheral blood smear showed approximately four schistocytes per high power field. Her prothrombin time was 14.9 s (INR = 1.2), D‐dimer was 2.14 μg mL−1 (reference < 0.5), and fibrinogen was 402 mg dL−1. Clinically, the patient was afebrile and complained of headaches, and demonstrated mental status changes as well as mild renal insufficiency. PE therapy was initiated given the strong clinical suspicion of TTP. Prior to starting PE, samples of plasma obtained showed ADAMTS‐13 activity to be 2.3% and a demonstrable neutralizing inhibitor [39Jin M. Cataland S. Bissell M. Wu H.M. A rapid test for the diagnosis of thrombotic thrombocytopenic purpura using surface enhanced laser desorption/ionization time‐of‐flight (SELDI‐TOF)‐mass spectrometry.J Thromb Haemost. 2006; 4: 333-8Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar]. The patient received daily PE therapy of 1 plasma volume using cryo‐poor plasma as the replacement fluid. After seven daily exchange procedures she achieved an initial clinical remission of TTP, defined by a normal platelet count, normalization of the LDH, and resolution of neurological and renal findings. At this time, her haptoglobin, hemoglobin and bilirubin levels and renal functions were all within normal ranges. The patient's LDH was stabilized but was still slightly elevated, which could probably be attributed to her recent history of craniotomy. At the time of clinical remission, her PE therapy was tapered every other day for two additional procedures and then discontinued. During the course of the disease and subsequent clinical follow‐ups, sequential samples were obtained to evaluate her ADAMTS‐13 system with respect to her clinical course of TTP. She remained in a clinical remission of TTP, without receiving any adjunct immunosuppressive therapy. This suggests that PE therapy alone can be effective even in a case of idiopathic TTP with a higher titer of neutralizing autoantibody. Unfortunately, the patient suffered a recurrence of her glioblastoma multiforme, resulting in a rapid clinical deterioration. After unsuccessful radiation therapy, she died 3 months later with no evidence of active TTP. As shown in Fig. 1, we examined ADAMTS‐13 activity, antigen, ADAMTS‐13 autoantibody level, and antibody activity in the specimens collected longitudinally from this patient. ADAMTS‐13 activity was 2.3% at the onset of her disease, improving to 12.5% at the time of initial clinical remission and then gradually normalizing over the course of the next 3 weeks. The ADAMTS‐13 antigen level was similarly depleted at the time of TTP occurrence. However, PE therapy restored the ADAMTS‐13 antigen level more rapidly than the restoration of ADAMTS‐13 activity level (Fig. 1). We next examined the ADAMTS‐13 immunoglobulin G (IgG) antibody levels longitudinally. It has been reported that IgG autoantibody is the major subtype of antibody responsible for acquired cases of TTP. IgM subtype autoantibody coexisted with IgG subtype only in a very small percentage of classic TTP patients [40Scheiflinger F. Knobl P. Trattner B. Plaimauer B. Mohr G. Dockal M. Dorner F. Rieger M. Nonneutralizing IgM and IgG antibodies to von Willebrand factor‐cleaving protease (ADAMTS‐13) in a patient with thrombotic thrombocytopenic purpura.Blood. 2003; 102: 3241-3Crossref PubMed Scopus (0) Google Scholar]. In this patient, the IgG antibody level was higher at the onset of TTP. When clinical remission was obtained, the antibody level was reduced by approximately 50%, although it was still thirtyfold higher than the upper limit of normal. We further evaluated inhibitory activity of the ADAMTS‐13 antibody by examining the ability of the patient's plasma to neutralize the ADAMTS‐13 activity in pooled normal plasma [39Jin M. Cataland S. Bissell M. Wu H.M. A rapid test for the diagnosis of thrombotic thrombocytopenic purpura using surface enhanced laser desorption/ionization time‐of‐flight (SELDI‐TOF)‐mass spectrometry.J Thromb Haemost. 2006; 4: 333-8Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar]. The sample collected at the onset of the disease neutralized 77% of the ADAMTS‐13 activity. Upon achieving clinical remission, the neutralization activity of patient plasma was reduced to about 15%. During the following period of stable clinical remission, the antibody level continued to show improvements but neither antibody level nor antibody activity was totally normalized. ADAMTS‐13 deficiency is a significant risk factor for TTP, but it is insufficient for causing disease by itself [1George J.N. Clinical practice. Thrombotic thrombocytopenic purpura.N Engl J Med. 2006; 354: 1927-35Crossref PubMed Scopus (442) Google Scholar, 41George J.N. The role of ADAMTS13 in the pathogenesis of thrombotic thrombocytopenic purpura‐hemolytic uremic syndrome.Clin Adv Hematol Oncol. 2005; 3: 627-32PubMed Google Scholar]. Additional factor(s) are necessary to trigger an overt episode of TTP. This patient may have had an existing deficiency of ADAMTS‐13 with autoimmune basis. Surgical removal of her glioblastoma multiforme may have somehow activated additional triggering factor(s) that set off an acute episode of TTP. Potential factors in this case could include the surgical stress or hypercoagulability that may have occurred secondary to the surgical resection of glioblastoma multiforme [42Rodas R.A. Fenstermaker R.A. McKeever P.E. Blaivas M. Dickinson L.D. Papadopoulos S.M. Hoff J.T. Hopkins L.N. Duffy‐Fronckowiak M. Greenberg H.S. Correlation of intraluminal thrombosis in brain tumor vessels with postoperative thrombotic complications: a preliminary report.J Neurosurg. 1998; 89: 200-5Crossref PubMed Google Scholar, 43Sawaya R. Zuccarello M. Elkalliny M. Nishiyama H. Postoperative venous thromboembolism and brain tumors: Part I. Clinical profile.J Neurooncol. 1992; 14: 119-25PubMed Google Scholar, 44Sawaya R. Highsmith R.F. Postoperative venous thromboembolism and brain tumors: Part III. Biochemical profile.J Neurooncol. 1992; 14: 113-8PubMed Google Scholar, 45Ruff R.L. Posner J.B. Incidence and treatment of peripheral venous thrombosis in patients with glioma.Ann Neurol. 1983; 13: 334-6Crossref PubMed Google Scholar]. The patient responded to PE therapy and achieved a sustained clinical remission. A longitudinal analysis of all four parameters in the ADAMTS‐13 system suggested that a clinical recovery from TTP depends neither on the total restoration of ADAMTS‐13 activity nor on the complete removal of the ADAMTS‐13 autoantibody. In this case however, both ADAMTS‐13 activity and antibody levels demonstrated a continuing improvement after achieving initial clinical recovery. Such sustained improvement may have been the molecular basis that prevented recurrences of TTP during subsequent follow‐ups. ADAMTS‐13 antigen levels behaved somewhat differently to those of ADAMTS‐13 activity over the course of TTP. ADAMTS‐13 antigen level has been reported to be low in patients with idiopathic TTP [46Liu F. Feys H.B. Dong N. Zhao Y. Ruan C. Alteration of ADAMTS13 antigen levels in patients with idiopathic thrombotic thrombocytopenic purpura, idiopathic thrombocytopenic purpura and systemic lupus erythematosus.Thromb Haemost. 2006; 95: 749-50Crossref Scopus (9) Google Scholar, 47Rieger M. Ferrari S. Kremer Hovinga J.A. Konetschny C. Herzog A. Koller L. Weber A. Remuzzi G. Dockal M. Plaimauer B. Scheiflinger F. Relation between ADAMTS13 activity and ADAMTS13 antigen levels in healthy donors and patients with thrombotic microangiopathies (TMA).Thromb Haemost. 2006; 95: 212-20Crossref PubMed Scopus (0) Google Scholar]. In this case, ADAMTS‐13 antigen level was also reduced at the onset of TTP. The depletion of ADAMTS‐13 antigen may be caused by ADAMTS‐13 autoantibody, which binds to the antigen and subsequently clears it from the circulation [48Shelat S.G. Smith P. Ai J. Zheng X.L. Inhibitory autoantibodies against ADAMTS‐13 in patients with thrombotic thrombocytopenic purpura bind ADAMTS‐13 protease and may accelerate its clearance in vivo.J Thromb Haemost. 2006; 4: 1707-17Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar]. Interestingly, ADAMTS‐13 antigen and ADAMTS‐13 activity were similarly depleted at the onset of disease. However, the antigen level was quickly normalized after clinical remission was achieved, differing from that of ADAMTS‐13 activity. This evidence suggests that ADAMTS‐13 antigen levels correlate better with the clinical course of TTP. Platelet count and LDH have been routinely used as laboratory parameters to monitor clinical response of TTP to therapy. While these tests provide sensitive measurements of TTP's disease activity, they are not specific biomarkers to TTP. Many clinical conditions, including ones that trigger TTP, such as sepsis, systemic lupus erythematosus, surgery and malignancy/chemotherapy, can cause abnormal platelet count and LDH. In these complicated clinical scenarios, a disease marker specific to TTP would be of tremendous value in the correct recognition of the clinical course of TTP. Further studies are needed to fully examine the clinical utility of ADAMTS‐13 antigen in the clinical evaluation of TTP's disease activity. In summary, this study reports the first case of immune acquired TTP arising after the surgical resection of glioblastoma multiforme. Importantly, we have carefully documented the clinical evolution of TTP in these circumstances, collected serial specimens from the patient, and performed a comprehensive study of the ADAMTS‐13 system with respect to the clinical course of TTP. Through these evaluations, we demonstrated that surgical resection of a malignant lesion may induce onset of immune acquired TTP. The observed autoantibody is capable of neutralizing ADAMTS‐13 function and probably caused a depletion of ADAMTS‐13 protein from the circulation. Additionally, we demonstrated that neither a full recovery of ADAMTS‐13 activity nor complete eradication of the ADAMTS‐13 autoantibody is a prerequisite for achieving clinical remission of TTP. Furthermore, our data suggest that the ADAMTS‐13 antigen level may be useful as a specific biomarker for evaluating the clinical response of TTP to therapy. This study was supported in part by grants from National Institutes of Health K08HL03279 and Ohio Biomedical Research and Technology Transfer Commission." @default.
- W2063431502 created "2016-06-24" @default.
- W2063431502 creator A5012869295 @default.
- W2063431502 creator A5023526054 @default.
- W2063431502 creator A5053638396 @default.
- W2063431502 creator A5056228605 @default.
- W2063431502 creator A5067216055 @default.
- W2063431502 date "2006-12-01" @default.
- W2063431502 modified "2023-10-16" @default.
- W2063431502 title "Full evaluation of an acquired case of thrombotic thrombocytopenic purpura following the surgical resection of glioblastoma multiforme" @default.
- W2063431502 cites W11334441 @default.
- W2063431502 cites W1882960365 @default.
- W2063431502 cites W1974721244 @default.
- W2063431502 cites W1975078125 @default.
- W2063431502 cites W1980969606 @default.
- W2063431502 cites W1995561910 @default.
- W2063431502 cites W1998474909 @default.
- W2063431502 cites W2005261677 @default.
- W2063431502 cites W2009578904 @default.
- W2063431502 cites W2012585132 @default.
- W2063431502 cites W2016623905 @default.
- W2063431502 cites W2018629859 @default.
- W2063431502 cites W2021157952 @default.
- W2063431502 cites W2023772918 @default.
- W2063431502 cites W2025214976 @default.
- W2063431502 cites W2028492855 @default.
- W2063431502 cites W2039994800 @default.
- W2063431502 cites W2041590010 @default.
- W2063431502 cites W2044282833 @default.
- W2063431502 cites W2044505929 @default.
- W2063431502 cites W2046668704 @default.
- W2063431502 cites W2051107088 @default.
- W2063431502 cites W2059305025 @default.
- W2063431502 cites W2075302329 @default.
- W2063431502 cites W2078086677 @default.
- W2063431502 cites W2080388518 @default.
- W2063431502 cites W2083101439 @default.
- W2063431502 cites W2084597906 @default.
- W2063431502 cites W2095542757 @default.
- W2063431502 cites W2096694969 @default.
- W2063431502 cites W2101061562 @default.
- W2063431502 cites W2119319300 @default.
- W2063431502 cites W2125236976 @default.
- W2063431502 cites W2145427481 @default.
- W2063431502 cites W2147498528 @default.
- W2063431502 cites W2161401535 @default.
- W2063431502 cites W2161528102 @default.
- W2063431502 cites W2315229770 @default.
- W2063431502 cites W2319482312 @default.
- W2063431502 cites W2340760838 @default.
- W2063431502 cites W4238378618 @default.
- W2063431502 cites W4294829823 @default.
- W2063431502 cites W99074107 @default.
- W2063431502 doi "https://doi.org/10.1111/j.1538-7836.2006.02217.x" @default.
- W2063431502 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16972936" @default.
- W2063431502 hasPublicationYear "2006" @default.
- W2063431502 type Work @default.
- W2063431502 sameAs 2063431502 @default.
- W2063431502 citedByCount "8" @default.
- W2063431502 countsByYear W20634315022012 @default.
- W2063431502 countsByYear W20634315022015 @default.
- W2063431502 crossrefType "journal-article" @default.
- W2063431502 hasAuthorship W2063431502A5012869295 @default.
- W2063431502 hasAuthorship W2063431502A5023526054 @default.
- W2063431502 hasAuthorship W2063431502A5053638396 @default.
- W2063431502 hasAuthorship W2063431502A5056228605 @default.
- W2063431502 hasAuthorship W2063431502A5067216055 @default.
- W2063431502 hasBestOaLocation W20634315021 @default.
- W2063431502 hasConcept C126322002 @default.
- W2063431502 hasConcept C141071460 @default.
- W2063431502 hasConcept C159110652 @default.
- W2063431502 hasConcept C18903297 @default.
- W2063431502 hasConcept C2776194525 @default.
- W2063431502 hasConcept C2777121669 @default.
- W2063431502 hasConcept C2778585876 @default.
- W2063431502 hasConcept C3020562746 @default.
- W2063431502 hasConcept C502942594 @default.
- W2063431502 hasConcept C71924100 @default.
- W2063431502 hasConcept C86803240 @default.
- W2063431502 hasConcept C89560881 @default.
- W2063431502 hasConceptScore W2063431502C126322002 @default.
- W2063431502 hasConceptScore W2063431502C141071460 @default.
- W2063431502 hasConceptScore W2063431502C159110652 @default.
- W2063431502 hasConceptScore W2063431502C18903297 @default.
- W2063431502 hasConceptScore W2063431502C2776194525 @default.
- W2063431502 hasConceptScore W2063431502C2777121669 @default.
- W2063431502 hasConceptScore W2063431502C2778585876 @default.
- W2063431502 hasConceptScore W2063431502C3020562746 @default.
- W2063431502 hasConceptScore W2063431502C502942594 @default.
- W2063431502 hasConceptScore W2063431502C71924100 @default.
- W2063431502 hasConceptScore W2063431502C86803240 @default.
- W2063431502 hasConceptScore W2063431502C89560881 @default.
- W2063431502 hasIssue "12" @default.
- W2063431502 hasLocation W20634315021 @default.
- W2063431502 hasLocation W20634315022 @default.
- W2063431502 hasOpenAccess W2063431502 @default.
- W2063431502 hasPrimaryLocation W20634315021 @default.
- W2063431502 hasRelatedWork W1997807695 @default.