Matches in SemOpenAlex for { <https://semopenalex.org/work/W2063715296> ?p ?o ?g. }
- W2063715296 endingPage "2260" @default.
- W2063715296 startingPage "2247" @default.
- W2063715296 abstract "The 2-D principal component analysis (2-DPCA) is a widely used method for image feature extraction. However, it can be equivalently implemented via image-row-based principal component analysis. This paper presents a structured 2-D method called nuclear norm-based 2-DPCA (N-2-DPCA), which uses a nuclear norm-based reconstruction error criterion. The nuclear norm is a matrix norm, which can provide a structured 2-D characterization for the reconstruction error image. The reconstruction error criterion is minimized by converting the nuclear norm-based optimization problem into a series of F-norm-based optimization problems. In addition, N-2-DPCA is extended to a bilateral projection-based N-2-DPCA (N-B2-DPCA). The virtue of N-B2-DPCA over N-2-DPCA is that an image can be represented with fewer coefficients. N-2-DPCA and N-B2-DPCA are applied to face recognition and reconstruction and evaluated using the Extended Yale B, CMU PIE, FRGC, and AR databases. Experimental results demonstrate the effectiveness of the proposed methods." @default.
- W2063715296 created "2016-06-24" @default.
- W2063715296 creator A5026662451 @default.
- W2063715296 creator A5062318228 @default.
- W2063715296 creator A5064363522 @default.
- W2063715296 creator A5089345835 @default.
- W2063715296 date "2015-10-01" @default.
- W2063715296 modified "2023-10-18" @default.
- W2063715296 title "Nuclear Norm-Based 2-DPCA for Extracting Features From Images" @default.
- W2063715296 cites W1498915505 @default.
- W2063715296 cites W1531254137 @default.
- W2063715296 cites W1541521713 @default.
- W2063715296 cites W1966096622 @default.
- W2063715296 cites W1974097586 @default.
- W2063715296 cites W1974788546 @default.
- W2063715296 cites W1977017150 @default.
- W2063715296 cites W1992633833 @default.
- W2063715296 cites W2006793117 @default.
- W2063715296 cites W2015625307 @default.
- W2063715296 cites W2021770241 @default.
- W2063715296 cites W2021779785 @default.
- W2063715296 cites W2027717478 @default.
- W2063715296 cites W2029472688 @default.
- W2063715296 cites W2040312993 @default.
- W2063715296 cites W2053585103 @default.
- W2063715296 cites W2053880411 @default.
- W2063715296 cites W2062227078 @default.
- W2063715296 cites W2063457978 @default.
- W2063715296 cites W2073940236 @default.
- W2063715296 cites W2077430220 @default.
- W2063715296 cites W2086953401 @default.
- W2063715296 cites W2098693229 @default.
- W2063715296 cites W2098884960 @default.
- W2063715296 cites W2102544846 @default.
- W2063715296 cites W2117553576 @default.
- W2063715296 cites W2117711690 @default.
- W2063715296 cites W2120552947 @default.
- W2063715296 cites W2121647436 @default.
- W2063715296 cites W2123921160 @default.
- W2063715296 cites W2124161253 @default.
- W2063715296 cites W2125874614 @default.
- W2063715296 cites W2128293876 @default.
- W2063715296 cites W2128437624 @default.
- W2063715296 cites W2131115214 @default.
- W2063715296 cites W2131192390 @default.
- W2063715296 cites W2134262590 @default.
- W2063715296 cites W2137659841 @default.
- W2063715296 cites W2140095548 @default.
- W2063715296 cites W2140907607 @default.
- W2063715296 cites W2144143728 @default.
- W2063715296 cites W2145962650 @default.
- W2063715296 cites W2146474141 @default.
- W2063715296 cites W2148252288 @default.
- W2063715296 cites W2151673022 @default.
- W2063715296 cites W2155027016 @default.
- W2063715296 cites W2164071167 @default.
- W2063715296 cites W2611328865 @default.
- W2063715296 doi "https://doi.org/10.1109/tnnls.2014.2376530" @default.
- W2063715296 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25585426" @default.
- W2063715296 hasPublicationYear "2015" @default.
- W2063715296 type Work @default.
- W2063715296 sameAs 2063715296 @default.
- W2063715296 citedByCount "72" @default.
- W2063715296 countsByYear W20637152962016 @default.
- W2063715296 countsByYear W20637152962017 @default.
- W2063715296 countsByYear W20637152962018 @default.
- W2063715296 countsByYear W20637152962019 @default.
- W2063715296 countsByYear W20637152962020 @default.
- W2063715296 countsByYear W20637152962021 @default.
- W2063715296 countsByYear W20637152962022 @default.
- W2063715296 countsByYear W20637152962023 @default.
- W2063715296 crossrefType "journal-article" @default.
- W2063715296 hasAuthorship W2063715296A5026662451 @default.
- W2063715296 hasAuthorship W2063715296A5062318228 @default.
- W2063715296 hasAuthorship W2063715296A5064363522 @default.
- W2063715296 hasAuthorship W2063715296A5089345835 @default.
- W2063715296 hasConcept C11413529 @default.
- W2063715296 hasConcept C121332964 @default.
- W2063715296 hasConcept C141379421 @default.
- W2063715296 hasConcept C153180895 @default.
- W2063715296 hasConcept C154945302 @default.
- W2063715296 hasConcept C158693339 @default.
- W2063715296 hasConcept C17744445 @default.
- W2063715296 hasConcept C191795146 @default.
- W2063715296 hasConcept C199539241 @default.
- W2063715296 hasConcept C27438332 @default.
- W2063715296 hasConcept C33923547 @default.
- W2063715296 hasConcept C41008148 @default.
- W2063715296 hasConcept C57493831 @default.
- W2063715296 hasConcept C62520636 @default.
- W2063715296 hasConcept C92207270 @default.
- W2063715296 hasConceptScore W2063715296C11413529 @default.
- W2063715296 hasConceptScore W2063715296C121332964 @default.
- W2063715296 hasConceptScore W2063715296C141379421 @default.
- W2063715296 hasConceptScore W2063715296C153180895 @default.
- W2063715296 hasConceptScore W2063715296C154945302 @default.
- W2063715296 hasConceptScore W2063715296C158693339 @default.
- W2063715296 hasConceptScore W2063715296C17744445 @default.