Matches in SemOpenAlex for { <https://semopenalex.org/work/W2063734355> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2063734355 endingPage "40" @default.
- W2063734355 startingPage "31" @default.
- W2063734355 abstract "Abstract Support vector machine (SVM) is currently state-of-the-art for classification tasks due to its ability to model nonlinearities. However, the main drawback of SVM is that it generates “black box” model, i.e. it does not reveal the knowledge learnt during training in human comprehensible form. The process of converting such opaque models into a transparent model is often regarded as rule extraction . In this paper we proposed a hybrid approach for extracting rules from SVM for customer relationship management (CRM) purposes. The proposed hybrid approach consists of three phases. (i) During first phase; SVM-RFE (SVM-recursive feature elimination) is employed to reduce the feature set. (ii) Dataset with reduced features is then used in the second phase to obtain SVM model and support vectors are extracted. (iii) Rules are then generated using Naive Bayes Tree (NBTree) in the final phase. The dataset analyzed in this research study is about Churn prediction in bank credit card customer (Business Intelligence Cup 2004) and it is highly unbalanced with 93.24% loyal and 6.76% churned customers. Further we employed various standard balancing approaches to balance the data and extracted rules. It is observed from the empirical results that the proposed hybrid outperformed all other techniques tested. As the reduced feature dataset is used, it is also observed that the proposed approach extracts smaller length rules, thereby improving the comprehensibility of the system. The generated rules act as an early warning expert system to the bank management." @default.
- W2063734355 created "2016-06-24" @default.
- W2063734355 creator A5049423985 @default.
- W2063734355 creator A5057893468 @default.
- W2063734355 creator A5073505371 @default.
- W2063734355 date "2014-06-01" @default.
- W2063734355 modified "2023-10-06" @default.
- W2063734355 title "Churn prediction using comprehensible support vector machine: An analytical CRM application" @default.
- W2063734355 cites W1941659294 @default.
- W2063734355 cites W1973849164 @default.
- W2063734355 cites W1980899288 @default.
- W2063734355 cites W1989049108 @default.
- W2063734355 cites W1996999443 @default.
- W2063734355 cites W2005530305 @default.
- W2063734355 cites W2010123231 @default.
- W2063734355 cites W2012079387 @default.
- W2063734355 cites W2020647649 @default.
- W2063734355 cites W2027617211 @default.
- W2063734355 cites W2032770670 @default.
- W2063734355 cites W2052910714 @default.
- W2063734355 cites W2059284263 @default.
- W2063734355 cites W2060510187 @default.
- W2063734355 cites W2061798849 @default.
- W2063734355 cites W2064231779 @default.
- W2063734355 cites W2076313627 @default.
- W2063734355 cites W2082036180 @default.
- W2063734355 cites W2087340651 @default.
- W2063734355 cites W2106096310 @default.
- W2063734355 cites W2112036221 @default.
- W2063734355 cites W2114357029 @default.
- W2063734355 cites W2114386642 @default.
- W2063734355 cites W2119051895 @default.
- W2063734355 cites W2131064753 @default.
- W2063734355 cites W2139921829 @default.
- W2063734355 cites W2142752589 @default.
- W2063734355 cites W2143426320 @default.
- W2063734355 cites W2146362072 @default.
- W2063734355 cites W2148143831 @default.
- W2063734355 cites W2154142492 @default.
- W2063734355 cites W2158086655 @default.
- W2063734355 cites W2159433204 @default.
- W2063734355 doi "https://doi.org/10.1016/j.asoc.2014.01.031" @default.
- W2063734355 hasPublicationYear "2014" @default.
- W2063734355 type Work @default.
- W2063734355 sameAs 2063734355 @default.
- W2063734355 citedByCount "118" @default.
- W2063734355 countsByYear W20637343552014 @default.
- W2063734355 countsByYear W20637343552015 @default.
- W2063734355 countsByYear W20637343552016 @default.
- W2063734355 countsByYear W20637343552017 @default.
- W2063734355 countsByYear W20637343552018 @default.
- W2063734355 countsByYear W20637343552019 @default.
- W2063734355 countsByYear W20637343552020 @default.
- W2063734355 countsByYear W20637343552021 @default.
- W2063734355 countsByYear W20637343552022 @default.
- W2063734355 countsByYear W20637343552023 @default.
- W2063734355 crossrefType "journal-article" @default.
- W2063734355 hasAuthorship W2063734355A5049423985 @default.
- W2063734355 hasAuthorship W2063734355A5057893468 @default.
- W2063734355 hasAuthorship W2063734355A5073505371 @default.
- W2063734355 hasConcept C119857082 @default.
- W2063734355 hasConcept C12267149 @default.
- W2063734355 hasConcept C124101348 @default.
- W2063734355 hasConcept C153180895 @default.
- W2063734355 hasConcept C154945302 @default.
- W2063734355 hasConcept C41008148 @default.
- W2063734355 hasConceptScore W2063734355C119857082 @default.
- W2063734355 hasConceptScore W2063734355C12267149 @default.
- W2063734355 hasConceptScore W2063734355C124101348 @default.
- W2063734355 hasConceptScore W2063734355C153180895 @default.
- W2063734355 hasConceptScore W2063734355C154945302 @default.
- W2063734355 hasConceptScore W2063734355C41008148 @default.
- W2063734355 hasLocation W20637343551 @default.
- W2063734355 hasOpenAccess W2063734355 @default.
- W2063734355 hasPrimaryLocation W20637343551 @default.
- W2063734355 hasRelatedWork W2041399278 @default.
- W2063734355 hasRelatedWork W2099369243 @default.
- W2063734355 hasRelatedWork W2120008580 @default.
- W2063734355 hasRelatedWork W2136184105 @default.
- W2063734355 hasRelatedWork W2163073107 @default.
- W2063734355 hasRelatedWork W3194539120 @default.
- W2063734355 hasRelatedWork W4205958290 @default.
- W2063734355 hasRelatedWork W4223656335 @default.
- W2063734355 hasRelatedWork W2187500075 @default.
- W2063734355 hasRelatedWork W2345184372 @default.
- W2063734355 hasVolume "19" @default.
- W2063734355 isParatext "false" @default.
- W2063734355 isRetracted "false" @default.
- W2063734355 magId "2063734355" @default.
- W2063734355 workType "article" @default.