Matches in SemOpenAlex for { <https://semopenalex.org/work/W2063759248> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2063759248 endingPage "207" @default.
- W2063759248 startingPage "192" @default.
- W2063759248 abstract "Abstract: The deluge of data available to managers underscores the need to develop intelligent systems to generate new knowledge. Such tools are available in the form of learning systems from artificial intelligence. This paper explores how the novel tools can support decision-making in the ubiquitous managerial task of forecasting. For concreteness, the methodology is examined in the context of predicting a financial index whose chaotic properties render the time series difficult to predict. The study investigates the circumstances under which enough new knowledge is extracted from temporal data to overturn the efficient markets hypothesis. The efficient markets hypothesis precludes the possibility of anticipating in financial markets. More precisely, the markets are deemed to be so efficient that the best forecast of a price level for the subsequent period is precisely the current price. Certain anomalies to the efficient market premise have been observed, such as calendar effects. Even so, forecasting techniques have been largely unable to outperform the random walk model which corresponds to the behavior of prices under the efficient markets hypothesis. This paper tests the validity of the efficient markets hypothesis by developing knowledge-based tools to forecast a market index. The predictions are examined across several horizons: single-period forecasts as well as multiple periods. For multiperiod forecasts, the predictive methodology takes two forms: a single jump from the current period to the end of the forecast horizon, and a multistage web of forecasts which progresses systematically from one period to the next. These models are first evaluated using neural networks and case-based reasoning, and are then compared against a random walk model. The computational models are examined in the context of forecasting a composite for the Korean stock market." @default.
- W2063759248 created "2016-06-24" @default.
- W2063759248 creator A5006309691 @default.
- W2063759248 creator A5080652607 @default.
- W2063759248 date "2004-09-01" @default.
- W2063759248 modified "2023-10-18" @default.
- W2063759248 title "Automated generation of new knowledge to support managerial decision-making: case study in forecasting a stock market" @default.
- W2063759248 cites W1967011375 @default.
- W2063759248 cites W1975987000 @default.
- W2063759248 cites W1987203652 @default.
- W2063759248 cites W1997628743 @default.
- W2063759248 cites W2004162112 @default.
- W2063759248 cites W2034099719 @default.
- W2063759248 cites W2095364399 @default.
- W2063759248 cites W2128084896 @default.
- W2063759248 cites W4206604683 @default.
- W2063759248 cites W4300402905 @default.
- W2063759248 cites W4312982345 @default.
- W2063759248 doi "https://doi.org/10.1111/j.1468-0394.2004.00277.x" @default.
- W2063759248 hasPublicationYear "2004" @default.
- W2063759248 type Work @default.
- W2063759248 sameAs 2063759248 @default.
- W2063759248 citedByCount "11" @default.
- W2063759248 countsByYear W20637592482013 @default.
- W2063759248 countsByYear W20637592482016 @default.
- W2063759248 countsByYear W20637592482020 @default.
- W2063759248 countsByYear W20637592482021 @default.
- W2063759248 countsByYear W20637592482022 @default.
- W2063759248 crossrefType "journal-article" @default.
- W2063759248 hasAuthorship W2063759248A5006309691 @default.
- W2063759248 hasAuthorship W2063759248A5080652607 @default.
- W2063759248 hasConcept C10138342 @default.
- W2063759248 hasConcept C119857082 @default.
- W2063759248 hasConcept C149782125 @default.
- W2063759248 hasConcept C151730666 @default.
- W2063759248 hasConcept C154945302 @default.
- W2063759248 hasConcept C162324750 @default.
- W2063759248 hasConcept C19244329 @default.
- W2063759248 hasConcept C2779343474 @default.
- W2063759248 hasConcept C2780299701 @default.
- W2063759248 hasConcept C29368100 @default.
- W2063759248 hasConcept C41008148 @default.
- W2063759248 hasConcept C86803240 @default.
- W2063759248 hasConceptScore W2063759248C10138342 @default.
- W2063759248 hasConceptScore W2063759248C119857082 @default.
- W2063759248 hasConceptScore W2063759248C149782125 @default.
- W2063759248 hasConceptScore W2063759248C151730666 @default.
- W2063759248 hasConceptScore W2063759248C154945302 @default.
- W2063759248 hasConceptScore W2063759248C162324750 @default.
- W2063759248 hasConceptScore W2063759248C19244329 @default.
- W2063759248 hasConceptScore W2063759248C2779343474 @default.
- W2063759248 hasConceptScore W2063759248C2780299701 @default.
- W2063759248 hasConceptScore W2063759248C29368100 @default.
- W2063759248 hasConceptScore W2063759248C41008148 @default.
- W2063759248 hasConceptScore W2063759248C86803240 @default.
- W2063759248 hasIssue "4" @default.
- W2063759248 hasLocation W20637592481 @default.
- W2063759248 hasOpenAccess W2063759248 @default.
- W2063759248 hasPrimaryLocation W20637592481 @default.
- W2063759248 hasRelatedWork W2013144489 @default.
- W2063759248 hasRelatedWork W2259679835 @default.
- W2063759248 hasRelatedWork W2372057879 @default.
- W2063759248 hasRelatedWork W2376552040 @default.
- W2063759248 hasRelatedWork W2645942849 @default.
- W2063759248 hasRelatedWork W2754349384 @default.
- W2063759248 hasRelatedWork W2766298999 @default.
- W2063759248 hasRelatedWork W3186508869 @default.
- W2063759248 hasRelatedWork W3188916907 @default.
- W2063759248 hasRelatedWork W68853006 @default.
- W2063759248 hasVolume "21" @default.
- W2063759248 isParatext "false" @default.
- W2063759248 isRetracted "false" @default.
- W2063759248 magId "2063759248" @default.
- W2063759248 workType "article" @default.