Matches in SemOpenAlex for { <https://semopenalex.org/work/W2064103944> ?p ?o ?g. }
- W2064103944 endingPage "116" @default.
- W2064103944 startingPage "105" @default.
- W2064103944 abstract "The prairie region of Canada and the United States is characterized by millions of small depressions of glacial origin called prairie potholes. The transfer of surface runoff in this landscape is mainly through a “fill and spill” mechanism among neighboring potholes. While non-contributing areas, that is small internally drained basins, are common on this landscape, during wet periods these areas can become hydrologically connected to larger regional drainage systems. Accurate prediction of prairie surface runoff generation and streamflow thus requires realistic representation of the dynamic threshold-mediated nature of these contributing areas. This paper presents a new prairie surface runoff generation algorithm for land surface schemes and large scale hydrological models that conceptualizes a hydrologic unit as a combination of variable and interacting storage elements. The proposed surface runoff generation algorithm uses a probability density function to represent the spatial variation of pothole storages and assumes a unique relationship between storage and the fractional contributing area for runoff (and hence amount of direct runoff generated) within a grid cell. In this paper the parameters that define this relationship are obtained by calibration against streamflow. The model was compared to an existing hydrology-land surface scheme (HLSS) applied to a typical Canadian prairie catchment, the Assiniboine River. The existing configuration is based on the Canadian Land Surface Scheme (CLASS) and WATROF (a physically-based overland and interflow scheme). The new configuration consists of CLASS coupled with the new PDMROF model. Results showed that the proposed surface runoff generation algorithm performed better at simulating streamflow, and appears to capture the dynamic nature of contributing areas in an effective and parsimonious manner. A pilot evaluation based on 1 m LiDAR data from a small (10 km2) experimental area suggests that the shape of the modeled storage-contributing area relationship is broadly consistent with that inferred from terrain analysis, under certain simplifying assumptions. The direct identification of storage–runoff parameters from terrain analysis is an outstanding challenge, and a promising area for future research." @default.
- W2064103944 created "2016-06-24" @default.
- W2064103944 creator A5025767605 @default.
- W2064103944 creator A5053640900 @default.
- W2064103944 creator A5070463730 @default.
- W2064103944 creator A5073524694 @default.
- W2064103944 creator A5074168905 @default.
- W2064103944 creator A5086383334 @default.
- W2064103944 date "2014-04-01" @default.
- W2064103944 modified "2023-09-27" @default.
- W2064103944 title "Towards an improved land surface scheme for prairie landscapes" @default.
- W2064103944 cites W1505551852 @default.
- W2064103944 cites W1512032832 @default.
- W2064103944 cites W1522568816 @default.
- W2064103944 cites W1561939392 @default.
- W2064103944 cites W1581906783 @default.
- W2064103944 cites W1914069691 @default.
- W2064103944 cites W1968243713 @default.
- W2064103944 cites W1970747947 @default.
- W2064103944 cites W1971419379 @default.
- W2064103944 cites W1976946189 @default.
- W2064103944 cites W1984530754 @default.
- W2064103944 cites W1991834604 @default.
- W2064103944 cites W1996476760 @default.
- W2064103944 cites W1996779796 @default.
- W2064103944 cites W1999550839 @default.
- W2064103944 cites W2009487953 @default.
- W2064103944 cites W2012669965 @default.
- W2064103944 cites W2015990418 @default.
- W2064103944 cites W2021394130 @default.
- W2064103944 cites W2023005676 @default.
- W2064103944 cites W2030288163 @default.
- W2064103944 cites W2033904036 @default.
- W2064103944 cites W2033990175 @default.
- W2064103944 cites W2051365164 @default.
- W2064103944 cites W2053014646 @default.
- W2064103944 cites W2062346564 @default.
- W2064103944 cites W2070556382 @default.
- W2064103944 cites W2097391803 @default.
- W2064103944 cites W2099860287 @default.
- W2064103944 cites W2105303037 @default.
- W2064103944 cites W2105631294 @default.
- W2064103944 cites W2109803264 @default.
- W2064103944 cites W2110532700 @default.
- W2064103944 cites W2113321344 @default.
- W2064103944 cites W2129457063 @default.
- W2064103944 cites W2130056471 @default.
- W2064103944 cites W2132578369 @default.
- W2064103944 cites W2141520975 @default.
- W2064103944 cites W2142023770 @default.
- W2064103944 cites W2151450859 @default.
- W2064103944 cites W2156076254 @default.
- W2064103944 cites W2162041940 @default.
- W2064103944 cites W2168490566 @default.
- W2064103944 cites W2179914824 @default.
- W2064103944 cites W2181201162 @default.
- W2064103944 cites W2365331582 @default.
- W2064103944 doi "https://doi.org/10.1016/j.jhydrol.2014.01.020" @default.
- W2064103944 hasPublicationYear "2014" @default.
- W2064103944 type Work @default.
- W2064103944 sameAs 2064103944 @default.
- W2064103944 citedByCount "63" @default.
- W2064103944 countsByYear W20641039442015 @default.
- W2064103944 countsByYear W20641039442016 @default.
- W2064103944 countsByYear W20641039442017 @default.
- W2064103944 countsByYear W20641039442018 @default.
- W2064103944 countsByYear W20641039442019 @default.
- W2064103944 countsByYear W20641039442020 @default.
- W2064103944 countsByYear W20641039442021 @default.
- W2064103944 countsByYear W20641039442022 @default.
- W2064103944 countsByYear W20641039442023 @default.
- W2064103944 crossrefType "journal-article" @default.
- W2064103944 hasAuthorship W2064103944A5025767605 @default.
- W2064103944 hasAuthorship W2064103944A5053640900 @default.
- W2064103944 hasAuthorship W2064103944A5070463730 @default.
- W2064103944 hasAuthorship W2064103944A5073524694 @default.
- W2064103944 hasAuthorship W2064103944A5074168905 @default.
- W2064103944 hasAuthorship W2064103944A5086383334 @default.
- W2064103944 hasConcept C124203675 @default.
- W2064103944 hasConcept C126645576 @default.
- W2064103944 hasConcept C127313418 @default.
- W2064103944 hasConcept C187320778 @default.
- W2064103944 hasConcept C18903297 @default.
- W2064103944 hasConcept C205649164 @default.
- W2064103944 hasConcept C24749216 @default.
- W2064103944 hasConcept C2776456000 @default.
- W2064103944 hasConcept C2779989982 @default.
- W2064103944 hasConcept C39432304 @default.
- W2064103944 hasConcept C50477045 @default.
- W2064103944 hasConcept C53739315 @default.
- W2064103944 hasConcept C58640448 @default.
- W2064103944 hasConcept C76886044 @default.
- W2064103944 hasConcept C86803240 @default.
- W2064103944 hasConceptScore W2064103944C124203675 @default.
- W2064103944 hasConceptScore W2064103944C126645576 @default.
- W2064103944 hasConceptScore W2064103944C127313418 @default.
- W2064103944 hasConceptScore W2064103944C187320778 @default.
- W2064103944 hasConceptScore W2064103944C18903297 @default.