Matches in SemOpenAlex for { <https://semopenalex.org/work/W2064274015> ?p ?o ?g. }
- W2064274015 endingPage "80" @default.
- W2064274015 startingPage "3" @default.
- W2064274015 abstract "In this paper we study a generalization of Arnold's original example in which he discussed the existence of a mechanism for instability caused by the splitting of the homoclinic manifolds of the weakly hyperbolic tori, that has subsequently been referred to as “Arnold diffusion” in case when the number of degrees of freedom n ≥ 3. Namely, we consider a widely studied model of a pendulum weakly coupled with n − 1 rotors with the degeneracies in the unperturbed Hamiltonian, corresponding to different timescales, existing in the problem. Using an alloy of the iterative and direct methods developed within the last years we give exponentially small upper bounds for the splitting measure of transversality for the case of an even, analytic perturbation, thus improving the estimate of Gallavotti (1994), which he calls quasiflat, and generalizing the analogous recent estimate of Delshams et al. (1996) for the rapidly quasiperiodically forced pendulum to a much larger class of Hamiltonian systems. In particular, the exponentially small upper bound for the transversality measure of the splitting applies when the Hamiltonian has extra degeneracies, namely when the frequencies on a torus become near-resonant. In fact, we show that in such a case the quantity in question becomes smaller, which is the incarnation of the general fact that resonant regions in the action space are more stable in the sense that they have larger Nekhoroshev exponent. Nekhoroshev exponent. Nevertheless, we emphasize that getting uniform estimates for an arbitrary n ≥ 3 is very hard unless one makes some additional assumptions on the approximation properties of the frequency vector. Although recent developments show that the first order of canonical perturbation theory, given by Melnikov integrals, generally cannot be accepted as the leading-order answer for the splitting distance for the case of more than two degrees of freedom, including the rapidly quasiperiodically forced pendulum problem, we suggest an analytic perturbation, the majority of whose Fourier components are strictly nondashzero, for which Melnikov integrals can be vindicated as the leading-order approximation for the components of the splitting distance in different directions if the frequencies on the invariant tori satisfy certain arithmetic conditions. This allows us to bound the splitting distance from below. Furthermore, having such a perturbation, for the case of three degrees of freedom, we use a simple number-theoretical argument to find the asymptotics of the Fourier series with exponentially small coefficients involved. This enables us to compute the numerous homoclinic orbits for the whiskered tori of asymptotically full measure, and by proving the domineering contribution of the first order of perturbation theory for the transversality measure, to suggest a leading-order answer for this quantity, which implies the existence of an infinite number of heteroclinic connections between tori with close diophantine frequencies. We elucidate the numerous arithmetic issues that obstruct getting a compact leading-order approximation for the splitting size, most of which can be overcome in the case of three degrees of freedom, as our example shows. These obstacles can be also possibly avoided in the same fashion for an arbitrary n ≥ 3 if one treats the case when the frequencies of the rotors are near a resonance of multiplicity n − 3 or n − 2." @default.
- W2064274015 created "2016-06-24" @default.
- W2064274015 creator A5022313708 @default.
- W2064274015 creator A5067867570 @default.
- W2064274015 date "1998-03-01" @default.
- W2064274015 modified "2023-09-25" @default.
- W2064274015 title "Existence of exponentially small separatrix splittings and homoclinic connections between whiskered tori in weakly hyperbolic near-integrable Hamiltonian systems" @default.
- W2064274015 cites W1265303248 @default.
- W2064274015 cites W126935648 @default.
- W2064274015 cites W1687280489 @default.
- W2064274015 cites W1830528808 @default.
- W2064274015 cites W1963745706 @default.
- W2064274015 cites W1966160012 @default.
- W2064274015 cites W1967807518 @default.
- W2064274015 cites W1972696906 @default.
- W2064274015 cites W1993379669 @default.
- W2064274015 cites W2004239280 @default.
- W2064274015 cites W2005264856 @default.
- W2064274015 cites W2007551203 @default.
- W2064274015 cites W2025480781 @default.
- W2064274015 cites W2042364543 @default.
- W2064274015 cites W2051959833 @default.
- W2064274015 cites W2066291207 @default.
- W2064274015 cites W2072041680 @default.
- W2064274015 cites W2075650773 @default.
- W2064274015 cites W2088212036 @default.
- W2064274015 cites W2118875303 @default.
- W2064274015 cites W2119921851 @default.
- W2064274015 cites W2158200094 @default.
- W2064274015 cites W2160163816 @default.
- W2064274015 cites W2172076975 @default.
- W2064274015 cites W2475276546 @default.
- W2064274015 cites W2964122016 @default.
- W2064274015 cites W643075289 @default.
- W2064274015 cites W771261764 @default.
- W2064274015 cites W83103552 @default.
- W2064274015 doi "https://doi.org/10.1016/s0167-2789(97)00173-5" @default.
- W2064274015 hasPublicationYear "1998" @default.
- W2064274015 type Work @default.
- W2064274015 sameAs 2064274015 @default.
- W2064274015 citedByCount "27" @default.
- W2064274015 countsByYear W20642740152014 @default.
- W2064274015 countsByYear W20642740152016 @default.
- W2064274015 countsByYear W20642740152018 @default.
- W2064274015 countsByYear W20642740152019 @default.
- W2064274015 crossrefType "journal-article" @default.
- W2064274015 hasAuthorship W2064274015A5022313708 @default.
- W2064274015 hasAuthorship W2064274015A5067867570 @default.
- W2064274015 hasConcept C121332964 @default.
- W2064274015 hasConcept C121770821 @default.
- W2064274015 hasConcept C126255220 @default.
- W2064274015 hasConcept C130787639 @default.
- W2064274015 hasConcept C134306372 @default.
- W2064274015 hasConcept C138885662 @default.
- W2064274015 hasConcept C158622935 @default.
- W2064274015 hasConcept C200581526 @default.
- W2064274015 hasConcept C200741047 @default.
- W2064274015 hasConcept C202444582 @default.
- W2064274015 hasConcept C24167531 @default.
- W2064274015 hasConcept C2524010 @default.
- W2064274015 hasConcept C2780388253 @default.
- W2064274015 hasConcept C2781349735 @default.
- W2064274015 hasConcept C33923547 @default.
- W2064274015 hasConcept C37914503 @default.
- W2064274015 hasConcept C41895202 @default.
- W2064274015 hasConcept C62520636 @default.
- W2064274015 hasConcept C77553402 @default.
- W2064274015 hasConcept C8522634 @default.
- W2064274015 hasConcept C9767117 @default.
- W2064274015 hasConceptScore W2064274015C121332964 @default.
- W2064274015 hasConceptScore W2064274015C121770821 @default.
- W2064274015 hasConceptScore W2064274015C126255220 @default.
- W2064274015 hasConceptScore W2064274015C130787639 @default.
- W2064274015 hasConceptScore W2064274015C134306372 @default.
- W2064274015 hasConceptScore W2064274015C138885662 @default.
- W2064274015 hasConceptScore W2064274015C158622935 @default.
- W2064274015 hasConceptScore W2064274015C200581526 @default.
- W2064274015 hasConceptScore W2064274015C200741047 @default.
- W2064274015 hasConceptScore W2064274015C202444582 @default.
- W2064274015 hasConceptScore W2064274015C24167531 @default.
- W2064274015 hasConceptScore W2064274015C2524010 @default.
- W2064274015 hasConceptScore W2064274015C2780388253 @default.
- W2064274015 hasConceptScore W2064274015C2781349735 @default.
- W2064274015 hasConceptScore W2064274015C33923547 @default.
- W2064274015 hasConceptScore W2064274015C37914503 @default.
- W2064274015 hasConceptScore W2064274015C41895202 @default.
- W2064274015 hasConceptScore W2064274015C62520636 @default.
- W2064274015 hasConceptScore W2064274015C77553402 @default.
- W2064274015 hasConceptScore W2064274015C8522634 @default.
- W2064274015 hasConceptScore W2064274015C9767117 @default.
- W2064274015 hasIssue "1-2" @default.
- W2064274015 hasLocation W20642740151 @default.
- W2064274015 hasOpenAccess W2064274015 @default.
- W2064274015 hasPrimaryLocation W20642740151 @default.
- W2064274015 hasRelatedWork W1968427005 @default.
- W2064274015 hasRelatedWork W1987218482 @default.
- W2064274015 hasRelatedWork W2020348013 @default.
- W2064274015 hasRelatedWork W2039380497 @default.