Matches in SemOpenAlex for { <https://semopenalex.org/work/W2064314529> ?p ?o ?g. }
- W2064314529 abstract "Text mining is increasingly used in the biomedical domain because of its ability to automatically gather information from large amount of scientific articles. One important task in biomedical text mining is relation extraction, which aims to identify designated relations among biological entities reported in literature. A relation extraction system achieving high performance is expensive to develop because of the substantial time and effort required for its design and implementation. Here, we report a novel framework to facilitate the development of a pattern-based biomedical relation extraction system. It has several unique design features: (1) leveraging syntactic variations possible in a language and automatically generating extraction patterns in a systematic manner, (2) applying sentence simplification to improve the coverage of extraction patterns, and (3) identifying referential relations between a syntactic argument of a predicate and the actual target expected in the relation extraction task. A relation extraction system derived using the proposed framework achieved overall F-scores of 72.66% for the Simple events and 55.57% for the Binding events on the BioNLP-ST 2011 GE test set, comparing favorably with the top performing systems that participated in the BioNLP-ST 2011 GE task. We obtained similar results on the BioNLP-ST 2013 GE test set (80.07% and 60.58%, respectively). We conducted additional experiments on the training and development sets to provide a more detailed analysis of the system and its individual modules. This analysis indicates that without increasing the number of patterns, simplification and referential relation linking play a key role in the effective extraction of biomedical relations. In this paper, we present a novel framework for fast development of relation extraction systems. The framework requires only a list of triggers as input, and does not need information from an annotated corpus. Thus, we reduce the involvement of domain experts, who would otherwise have to provide manual annotations and help with the design of hand crafted patterns. We demonstrate how our framework is used to develop a system which achieves state-of-the-art performance on a public benchmark corpus." @default.
- W2064314529 created "2016-06-24" @default.
- W2064314529 creator A5027009667 @default.
- W2064314529 creator A5028161578 @default.
- W2064314529 creator A5053761444 @default.
- W2064314529 creator A5085113833 @default.
- W2064314529 date "2014-08-23" @default.
- W2064314529 modified "2023-10-16" @default.
- W2064314529 title "A generalizable NLP framework for fast development of pattern-based biomedical relation extraction systems" @default.
- W2064314529 cites W1973406306 @default.
- W2064314529 cites W1982827383 @default.
- W2064314529 cites W1982944197 @default.
- W2064314529 cites W1986704581 @default.
- W2064314529 cites W1990794790 @default.
- W2064314529 cites W2003619089 @default.
- W2064314529 cites W2032685482 @default.
- W2064314529 cites W2062163602 @default.
- W2064314529 cites W2068094441 @default.
- W2064314529 cites W2068737686 @default.
- W2064314529 cites W2083195256 @default.
- W2064314529 cites W2086320386 @default.
- W2064314529 cites W2097960255 @default.
- W2064314529 cites W2104965688 @default.
- W2064314529 cites W2110408238 @default.
- W2064314529 cites W2117809888 @default.
- W2064314529 cites W2121368442 @default.
- W2064314529 cites W2121844933 @default.
- W2064314529 cites W2123112337 @default.
- W2064314529 cites W2127976940 @default.
- W2064314529 cites W2144570265 @default.
- W2064314529 cites W2152228269 @default.
- W2064314529 cites W2157628440 @default.
- W2064314529 cites W2166057395 @default.
- W2064314529 cites W2166111585 @default.
- W2064314529 cites W4301420590 @default.
- W2064314529 cites W563668364 @default.
- W2064314529 doi "https://doi.org/10.1186/1471-2105-15-285" @default.
- W2064314529 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4262219" @default.
- W2064314529 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25149151" @default.
- W2064314529 hasPublicationYear "2014" @default.
- W2064314529 type Work @default.
- W2064314529 sameAs 2064314529 @default.
- W2064314529 citedByCount "23" @default.
- W2064314529 countsByYear W20643145292015 @default.
- W2064314529 countsByYear W20643145292016 @default.
- W2064314529 countsByYear W20643145292017 @default.
- W2064314529 countsByYear W20643145292018 @default.
- W2064314529 countsByYear W20643145292019 @default.
- W2064314529 countsByYear W20643145292020 @default.
- W2064314529 countsByYear W20643145292021 @default.
- W2064314529 countsByYear W20643145292022 @default.
- W2064314529 countsByYear W20643145292023 @default.
- W2064314529 crossrefType "journal-article" @default.
- W2064314529 hasAuthorship W2064314529A5027009667 @default.
- W2064314529 hasAuthorship W2064314529A5028161578 @default.
- W2064314529 hasAuthorship W2064314529A5053761444 @default.
- W2064314529 hasAuthorship W2064314529A5085113833 @default.
- W2064314529 hasBestOaLocation W20643145291 @default.
- W2064314529 hasConcept C119857082 @default.
- W2064314529 hasConcept C124101348 @default.
- W2064314529 hasConcept C153604712 @default.
- W2064314529 hasConcept C154945302 @default.
- W2064314529 hasConcept C162324750 @default.
- W2064314529 hasConcept C165141518 @default.
- W2064314529 hasConcept C169903167 @default.
- W2064314529 hasConcept C177264268 @default.
- W2064314529 hasConcept C187736073 @default.
- W2064314529 hasConcept C195807954 @default.
- W2064314529 hasConcept C199360897 @default.
- W2064314529 hasConcept C204321447 @default.
- W2064314529 hasConcept C23123220 @default.
- W2064314529 hasConcept C25343380 @default.
- W2064314529 hasConcept C2777530160 @default.
- W2064314529 hasConcept C2780451532 @default.
- W2064314529 hasConcept C41008148 @default.
- W2064314529 hasConcept C71472368 @default.
- W2064314529 hasConceptScore W2064314529C119857082 @default.
- W2064314529 hasConceptScore W2064314529C124101348 @default.
- W2064314529 hasConceptScore W2064314529C153604712 @default.
- W2064314529 hasConceptScore W2064314529C154945302 @default.
- W2064314529 hasConceptScore W2064314529C162324750 @default.
- W2064314529 hasConceptScore W2064314529C165141518 @default.
- W2064314529 hasConceptScore W2064314529C169903167 @default.
- W2064314529 hasConceptScore W2064314529C177264268 @default.
- W2064314529 hasConceptScore W2064314529C187736073 @default.
- W2064314529 hasConceptScore W2064314529C195807954 @default.
- W2064314529 hasConceptScore W2064314529C199360897 @default.
- W2064314529 hasConceptScore W2064314529C204321447 @default.
- W2064314529 hasConceptScore W2064314529C23123220 @default.
- W2064314529 hasConceptScore W2064314529C25343380 @default.
- W2064314529 hasConceptScore W2064314529C2777530160 @default.
- W2064314529 hasConceptScore W2064314529C2780451532 @default.
- W2064314529 hasConceptScore W2064314529C41008148 @default.
- W2064314529 hasConceptScore W2064314529C71472368 @default.
- W2064314529 hasIssue "1" @default.
- W2064314529 hasLocation W20643145291 @default.
- W2064314529 hasLocation W20643145292 @default.
- W2064314529 hasLocation W20643145293 @default.
- W2064314529 hasLocation W20643145294 @default.
- W2064314529 hasOpenAccess W2064314529 @default.