Matches in SemOpenAlex for { <https://semopenalex.org/work/W2064466899> ?p ?o ?g. }
- W2064466899 endingPage "779" @default.
- W2064466899 startingPage "779" @default.
- W2064466899 abstract "The Moisezon theorem is extended to complex spaces with isolated singularities. A problem of fundamental concern is determining sufficient conditions under which a complex space X is algebraic. Ideally, these conditions involve simple intrinsic analytic features of X . An n-dimensional manifold X is called Kahler if it admits a hermitian metric whose associated (1, 1)-form co is closed, and it is called Mois'ezon if it admits n algebraically independent global meromorphic functions. A fundamental theorem of Moisezon states that if a manifold X is Kahler and Moisezon, then X is a projective algebraic variety (i.e., X is the common zero locus of a set of homogeneous polynomials in projective space). The Kahler and Moisezon conditions can be generalized to singular complex spaces; however, it is no longer the case that these two conditions will imply algebraicity (an example is provided in [7]). In this paper we investigate situations under which a complex space X which is Kahler and Moisezon must be projective algebraic. For example, we show that if a compact space of dimension at least four is a complete intersection with isolated singularities, then the Kahler and Moisezon conditions imply projective algebraicity. In Section 1 we investigate conditions which allow us to extend holomorphic line bundles over singular points of a complex space. In Section 2 we use a singular version of the Kodaira embedding theorem to reduce the problem to one of extending line bundles over singular points. 1. EXTENDING LINE BUNDLES OVER SINGULAR POINTS Let X be a complex space with isolated singularities and structure sheaf Ax . Recall that an invertible sheaf is a locally free Ax-module of rank one and that the set of these is the Picard group H1 (X, Ax) . We seek sufficient conditions for a holomorphic line bundle L on the regular part of X to extend to X as an invertible sheaf. For a small neighborhood U of a singularity x E X, the exact sequence of sheaves 0 -Z -Ax -A -x 0 and the exact sequence Received by the editors June 7, 1993. 1991 Mathematics Subject Classification. Primary 32J25." @default.
- W2064466899 created "2016-06-24" @default.
- W2064466899 creator A5037305146 @default.
- W2064466899 date "1995-03-01" @default.
- W2064466899 modified "2023-09-26" @default.
- W2064466899 title "Kähler Moišezon spaces which are projective algebraic" @default.
- W2064466899 cites W113217603 @default.
- W2064466899 cites W1532036476 @default.
- W2064466899 cites W1625932752 @default.
- W2064466899 cites W1975083852 @default.
- W2064466899 cites W2044701991 @default.
- W2064466899 cites W2051743400 @default.
- W2064466899 cites W2058693725 @default.
- W2064466899 cites W2014503349 @default.
- W2064466899 doi "https://doi.org/10.1090/s0002-9939-1995-1242109-7" @default.
- W2064466899 hasPublicationYear "1995" @default.
- W2064466899 type Work @default.
- W2064466899 sameAs 2064466899 @default.
- W2064466899 citedByCount "0" @default.
- W2064466899 crossrefType "journal-article" @default.
- W2064466899 hasAuthorship W2064466899A5037305146 @default.
- W2064466899 hasBestOaLocation W20644668991 @default.
- W2064466899 hasConcept C12089564 @default.
- W2064466899 hasConcept C132702353 @default.
- W2064466899 hasConcept C134306372 @default.
- W2064466899 hasConcept C137134375 @default.
- W2064466899 hasConcept C1432948 @default.
- W2064466899 hasConcept C157135747 @default.
- W2064466899 hasConcept C168185519 @default.
- W2064466899 hasConcept C177846678 @default.
- W2064466899 hasConcept C186219872 @default.
- W2064466899 hasConcept C190333341 @default.
- W2064466899 hasConcept C195065555 @default.
- W2064466899 hasConcept C201482947 @default.
- W2064466899 hasConcept C202444582 @default.
- W2064466899 hasConcept C204575570 @default.
- W2064466899 hasConcept C24129628 @default.
- W2064466899 hasConcept C2524010 @default.
- W2064466899 hasConcept C27602778 @default.
- W2064466899 hasConcept C33923547 @default.
- W2064466899 hasConcept C51544822 @default.
- W2064466899 hasConcept C62139920 @default.
- W2064466899 hasConcept C75280867 @default.
- W2064466899 hasConcept C78045399 @default.
- W2064466899 hasConcept C90685605 @default.
- W2064466899 hasConcept C92757383 @default.
- W2064466899 hasConceptScore W2064466899C12089564 @default.
- W2064466899 hasConceptScore W2064466899C132702353 @default.
- W2064466899 hasConceptScore W2064466899C134306372 @default.
- W2064466899 hasConceptScore W2064466899C137134375 @default.
- W2064466899 hasConceptScore W2064466899C1432948 @default.
- W2064466899 hasConceptScore W2064466899C157135747 @default.
- W2064466899 hasConceptScore W2064466899C168185519 @default.
- W2064466899 hasConceptScore W2064466899C177846678 @default.
- W2064466899 hasConceptScore W2064466899C186219872 @default.
- W2064466899 hasConceptScore W2064466899C190333341 @default.
- W2064466899 hasConceptScore W2064466899C195065555 @default.
- W2064466899 hasConceptScore W2064466899C201482947 @default.
- W2064466899 hasConceptScore W2064466899C202444582 @default.
- W2064466899 hasConceptScore W2064466899C204575570 @default.
- W2064466899 hasConceptScore W2064466899C24129628 @default.
- W2064466899 hasConceptScore W2064466899C2524010 @default.
- W2064466899 hasConceptScore W2064466899C27602778 @default.
- W2064466899 hasConceptScore W2064466899C33923547 @default.
- W2064466899 hasConceptScore W2064466899C51544822 @default.
- W2064466899 hasConceptScore W2064466899C62139920 @default.
- W2064466899 hasConceptScore W2064466899C75280867 @default.
- W2064466899 hasConceptScore W2064466899C78045399 @default.
- W2064466899 hasConceptScore W2064466899C90685605 @default.
- W2064466899 hasConceptScore W2064466899C92757383 @default.
- W2064466899 hasIssue "3" @default.
- W2064466899 hasLocation W20644668991 @default.
- W2064466899 hasOpenAccess W2064466899 @default.
- W2064466899 hasPrimaryLocation W20644668991 @default.
- W2064466899 hasRelatedWork W1538532655 @default.
- W2064466899 hasRelatedWork W1973636400 @default.
- W2064466899 hasRelatedWork W1975628015 @default.
- W2064466899 hasRelatedWork W1983334822 @default.
- W2064466899 hasRelatedWork W1995516085 @default.
- W2064466899 hasRelatedWork W1998562361 @default.
- W2064466899 hasRelatedWork W2053029134 @default.
- W2064466899 hasRelatedWork W2061399091 @default.
- W2064466899 hasRelatedWork W2063343169 @default.
- W2064466899 hasRelatedWork W2065961447 @default.
- W2064466899 hasRelatedWork W2095535747 @default.
- W2064466899 hasRelatedWork W2248706069 @default.
- W2064466899 hasRelatedWork W2372561452 @default.
- W2064466899 hasRelatedWork W2562378621 @default.
- W2064466899 hasRelatedWork W295685581 @default.
- W2064466899 hasRelatedWork W2964087157 @default.
- W2064466899 hasRelatedWork W3031260873 @default.
- W2064466899 hasRelatedWork W3035831847 @default.
- W2064466899 hasRelatedWork W591062281 @default.
- W2064466899 hasRelatedWork W597244086 @default.
- W2064466899 hasVolume "123" @default.
- W2064466899 isParatext "false" @default.
- W2064466899 isRetracted "false" @default.
- W2064466899 magId "2064466899" @default.