Matches in SemOpenAlex for { <https://semopenalex.org/work/W2064558710> ?p ?o ?g. }
- W2064558710 endingPage "73" @default.
- W2064558710 startingPage "63" @default.
- W2064558710 abstract "Artificial neural network methods appear to be a reliable alternative to traditional methods of tree height prediction in even-aged stands. However, this has not been demonstrated for uneven-aged forests. Two back-propagation artificial neural networks were constructed, and their performance in estimating the height of pure uneven-aged stands of common beech (Fagus sylvatica L.) in northwestern Spain was compared with that of the models most commonly used to estimate tree height (nonlinear calibrated local and generalized mixed-effects models and generalized fixed-effects models). All approaches produced accurate results, reducing the root mean squared error by more than 22% relative to basic nonlinear regression. Nonetheless, considering practical use of the models, the traditional approaches require measurement of several trees for calculation of stand-specific variables (generalized models) and for model calibration (mixed-effects models). Back-propagation artificial neural networks require less sampling effort because no height measurements are required for their implementation. However, this technique was not the best height predictor, because of the high degree of variability in site quality between stands. In this case, the local mixed-effects models yielded the best results and provided the best balance between the accuracy of the model and sampling effort." @default.
- W2064558710 created "2016-06-24" @default.
- W2064558710 creator A5032089212 @default.
- W2064558710 creator A5052785126 @default.
- W2064558710 creator A5052982334 @default.
- W2064558710 creator A5063700815 @default.
- W2064558710 creator A5089592715 @default.
- W2064558710 date "2013-11-01" @default.
- W2064558710 modified "2023-10-15" @default.
- W2064558710 title "Tree height prediction approaches for uneven-aged beech forests in northwestern Spain" @default.
- W2064558710 cites W105883628 @default.
- W2064558710 cites W161617749 @default.
- W2064558710 cites W1963988599 @default.
- W2064558710 cites W1964396812 @default.
- W2064558710 cites W1967222170 @default.
- W2064558710 cites W1974258697 @default.
- W2064558710 cites W1981707680 @default.
- W2064558710 cites W1990305456 @default.
- W2064558710 cites W1992641259 @default.
- W2064558710 cites W1993147091 @default.
- W2064558710 cites W1997054814 @default.
- W2064558710 cites W1997632044 @default.
- W2064558710 cites W1999659160 @default.
- W2064558710 cites W2006092758 @default.
- W2064558710 cites W2007033047 @default.
- W2064558710 cites W2007448463 @default.
- W2064558710 cites W2020250897 @default.
- W2064558710 cites W2020691931 @default.
- W2064558710 cites W202968635 @default.
- W2064558710 cites W2030229535 @default.
- W2064558710 cites W2036169315 @default.
- W2064558710 cites W2036938039 @default.
- W2064558710 cites W2040966598 @default.
- W2064558710 cites W2041434896 @default.
- W2064558710 cites W2052467489 @default.
- W2064558710 cites W2080546606 @default.
- W2064558710 cites W2090675543 @default.
- W2064558710 cites W2101464256 @default.
- W2064558710 cites W2114123573 @default.
- W2064558710 cites W2117489041 @default.
- W2064558710 cites W2129880006 @default.
- W2064558710 cites W2139972272 @default.
- W2064558710 cites W2143523796 @default.
- W2064558710 cites W2144962485 @default.
- W2064558710 cites W2153914621 @default.
- W2064558710 cites W2163193365 @default.
- W2064558710 cites W2167800154 @default.
- W2064558710 cites W2168302836 @default.
- W2064558710 cites W2278685458 @default.
- W2064558710 cites W2402545041 @default.
- W2064558710 cites W2969711158 @default.
- W2064558710 cites W2969958875 @default.
- W2064558710 doi "https://doi.org/10.1016/j.foreco.2013.07.014" @default.
- W2064558710 hasPublicationYear "2013" @default.
- W2064558710 type Work @default.
- W2064558710 sameAs 2064558710 @default.
- W2064558710 citedByCount "34" @default.
- W2064558710 countsByYear W20645587102014 @default.
- W2064558710 countsByYear W20645587102015 @default.
- W2064558710 countsByYear W20645587102016 @default.
- W2064558710 countsByYear W20645587102017 @default.
- W2064558710 countsByYear W20645587102018 @default.
- W2064558710 countsByYear W20645587102020 @default.
- W2064558710 countsByYear W20645587102021 @default.
- W2064558710 countsByYear W20645587102022 @default.
- W2064558710 countsByYear W20645587102023 @default.
- W2064558710 crossrefType "journal-article" @default.
- W2064558710 hasAuthorship W2064558710A5032089212 @default.
- W2064558710 hasAuthorship W2064558710A5052785126 @default.
- W2064558710 hasAuthorship W2064558710A5052982334 @default.
- W2064558710 hasAuthorship W2064558710A5063700815 @default.
- W2064558710 hasAuthorship W2064558710A5089592715 @default.
- W2064558710 hasConcept C105795698 @default.
- W2064558710 hasConcept C106131492 @default.
- W2064558710 hasConcept C113174947 @default.
- W2064558710 hasConcept C119857082 @default.
- W2064558710 hasConcept C134306372 @default.
- W2064558710 hasConcept C139945424 @default.
- W2064558710 hasConcept C140779682 @default.
- W2064558710 hasConcept C165838908 @default.
- W2064558710 hasConcept C205649164 @default.
- W2064558710 hasConcept C2776500793 @default.
- W2064558710 hasConcept C2780144066 @default.
- W2064558710 hasConcept C31972630 @default.
- W2064558710 hasConcept C33923547 @default.
- W2064558710 hasConcept C41008148 @default.
- W2064558710 hasConcept C50644808 @default.
- W2064558710 hasConcept C83546350 @default.
- W2064558710 hasConcept C97137747 @default.
- W2064558710 hasConceptScore W2064558710C105795698 @default.
- W2064558710 hasConceptScore W2064558710C106131492 @default.
- W2064558710 hasConceptScore W2064558710C113174947 @default.
- W2064558710 hasConceptScore W2064558710C119857082 @default.
- W2064558710 hasConceptScore W2064558710C134306372 @default.
- W2064558710 hasConceptScore W2064558710C139945424 @default.
- W2064558710 hasConceptScore W2064558710C140779682 @default.
- W2064558710 hasConceptScore W2064558710C165838908 @default.
- W2064558710 hasConceptScore W2064558710C205649164 @default.