Matches in SemOpenAlex for { <https://semopenalex.org/work/W2064748041> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2064748041 abstract "The capability to support plethora of new diverse applications has placed Wireless Sensor Network (WSN) technology at threshold of an era of significant potential growth. In this paper, an attempt is made to analyze effectiveness of various available approaches toward pattern recognition in WSNs while introducing a novel method using a highly distributed associative memory technique called Graph Neuron (GN). The proposed approach not only enjoys from conserving the limited power resources of resource-constrained sensor nodes but also can be scaled effectively to address scalability issues which are of primary concern in wireless sensor networks. In addition, to overcome the issues of crosstalk available in the GN algorithm, Hierarchical Graph Neuron (HGN) an extended model of GN is presented which not only promises to deliver accurate results but also can be used for diverse types of applications in a multidimensional domain." @default.
- W2064748041 created "2016-06-24" @default.
- W2064748041 creator A5014872081 @default.
- W2064748041 creator A5086248558 @default.
- W2064748041 date "2009-06-21" @default.
- W2064748041 modified "2023-09-24" @default.
- W2064748041 title "Graph neuron and hierarchical graph neuron, novel approaches toward real time pattern recognition in wireless sensor networks" @default.
- W2064748041 cites W1496514203 @default.
- W2064748041 cites W2002076319 @default.
- W2064748041 cites W2103263975 @default.
- W2064748041 cites W2108755545 @default.
- W2064748041 cites W2142185839 @default.
- W2064748041 cites W2146232384 @default.
- W2064748041 cites W4213332169 @default.
- W2064748041 cites W4299670631 @default.
- W2064748041 doi "https://doi.org/10.1145/1582379.1582467" @default.
- W2064748041 hasPublicationYear "2009" @default.
- W2064748041 type Work @default.
- W2064748041 sameAs 2064748041 @default.
- W2064748041 citedByCount "3" @default.
- W2064748041 countsByYear W20647480412014 @default.
- W2064748041 countsByYear W20647480412015 @default.
- W2064748041 countsByYear W20647480412016 @default.
- W2064748041 crossrefType "proceedings-article" @default.
- W2064748041 hasAuthorship W2064748041A5014872081 @default.
- W2064748041 hasAuthorship W2064748041A5086248558 @default.
- W2064748041 hasConcept C132525143 @default.
- W2064748041 hasConcept C154945302 @default.
- W2064748041 hasConcept C24590314 @default.
- W2064748041 hasConcept C31258907 @default.
- W2064748041 hasConcept C41008148 @default.
- W2064748041 hasConcept C555944384 @default.
- W2064748041 hasConcept C76155785 @default.
- W2064748041 hasConcept C80444323 @default.
- W2064748041 hasConceptScore W2064748041C132525143 @default.
- W2064748041 hasConceptScore W2064748041C154945302 @default.
- W2064748041 hasConceptScore W2064748041C24590314 @default.
- W2064748041 hasConceptScore W2064748041C31258907 @default.
- W2064748041 hasConceptScore W2064748041C41008148 @default.
- W2064748041 hasConceptScore W2064748041C555944384 @default.
- W2064748041 hasConceptScore W2064748041C76155785 @default.
- W2064748041 hasConceptScore W2064748041C80444323 @default.
- W2064748041 hasLocation W20647480411 @default.
- W2064748041 hasOpenAccess W2064748041 @default.
- W2064748041 hasPrimaryLocation W20647480411 @default.
- W2064748041 hasRelatedWork W1781058469 @default.
- W2064748041 hasRelatedWork W2107367999 @default.
- W2064748041 hasRelatedWork W2163457656 @default.
- W2064748041 hasRelatedWork W2378314110 @default.
- W2064748041 hasRelatedWork W2391817034 @default.
- W2064748041 hasRelatedWork W2510217115 @default.
- W2064748041 hasRelatedWork W2537192904 @default.
- W2064748041 hasRelatedWork W3107474891 @default.
- W2064748041 hasRelatedWork W4234410389 @default.
- W2064748041 hasRelatedWork W4254304356 @default.
- W2064748041 isParatext "false" @default.
- W2064748041 isRetracted "false" @default.
- W2064748041 magId "2064748041" @default.
- W2064748041 workType "article" @default.