Matches in SemOpenAlex for { <https://semopenalex.org/work/W2064865611> ?p ?o ?g. }
- W2064865611 endingPage "165" @default.
- W2064865611 startingPage "153" @default.
- W2064865611 abstract "Granular materials in industrial applications or nature usually consist of a wide variety of differently formed particles. Very often the shape of the involved objects does not even reveal any symmetry. For the simulation of these particle systems the Discrete Element Method based on spherical or symmetric shaped particles like ellipses/ellipsoids or superquadrics is therefore inadequate. A numerical implementation addressing this problem was found by introducing particles clustered from simpler geometries like spheres. Based on this approach, known as the multi-sphere method, it is possible to ensure computational efficiency for contact detection and force calculation on the one hand, but also allow a suitable representation of shape on the other hand. Today this approach is implemented in several commercial DEM-packages. However, studies on the validity of this approach have only been performed in limited cases. To address this situation, an experimental study performed by Gorham and Kharaz [D.A. Gorham, A.H. Kharaz, The measurement of particle rebound characteristics, Powder Technology 112 (3), 193–202 (2000)] is modeled using the multi-sphere approach. The spherical aluminum oxide particle used in the investigation is approximated by a number of smaller spherical bodies. Macroscopic collision properties are calculated and compared to experimental and numerical results obtained for a rigid spherical particle. Granular materials in industrial applications or nature usually consist of a wide variety of differently formed particles. An efficient numerical implementation for DEM was found by introducing particles clustered from simpler geometries like spheres. Based on this approach, known as the multi-sphere method, it is possible to ensure computational efficiency for contact detection and force calculation on the one hand, but also allow a suitable representation of shape on the other hand. Today this approach is implemented in several commercial DEM-packages. However, studies on the validity of this approach have only been performed in limited cases. To address this situation, an experimental study performed by Gorham and Kharaz [D.A. Gorham, A.H. Kharaz, The measurement of particle rebound characteristics, Powder Technology 112 (3), 193–202 (2000).] is modeled using the multi-sphere approach. The spherical aluminum oxide particle used in the investigation is approximated by a number of smaller spherical bodies. Macroscopic collision properties are calculated and compared to experimental and numerical results obtained for a rigid spherical particle.Download : Download full-size image" @default.
- W2064865611 created "2016-06-24" @default.
- W2064865611 creator A5013514693 @default.
- W2064865611 creator A5024603574 @default.
- W2064865611 creator A5049371508 @default.
- W2064865611 creator A5065697316 @default.
- W2064865611 date "2008-12-01" @default.
- W2064865611 modified "2023-10-12" @default.
- W2064865611 title "A study on the validity of the multi-sphere Discrete Element Method" @default.
- W2064865611 cites W1973427596 @default.
- W2064865611 cites W1973963568 @default.
- W2064865611 cites W1977583541 @default.
- W2064865611 cites W1985199872 @default.
- W2064865611 cites W1986518712 @default.
- W2064865611 cites W1987079253 @default.
- W2064865611 cites W1987499128 @default.
- W2064865611 cites W1987823718 @default.
- W2064865611 cites W1990269797 @default.
- W2064865611 cites W1993576373 @default.
- W2064865611 cites W1994713690 @default.
- W2064865611 cites W1996628413 @default.
- W2064865611 cites W2003269373 @default.
- W2064865611 cites W2003300854 @default.
- W2064865611 cites W2003568319 @default.
- W2064865611 cites W2008577520 @default.
- W2064865611 cites W2010219273 @default.
- W2064865611 cites W2014874781 @default.
- W2064865611 cites W2015413077 @default.
- W2064865611 cites W2026088684 @default.
- W2064865611 cites W2028704819 @default.
- W2064865611 cites W2036899262 @default.
- W2064865611 cites W2037932611 @default.
- W2064865611 cites W2040788680 @default.
- W2064865611 cites W2043230687 @default.
- W2064865611 cites W2045014829 @default.
- W2064865611 cites W2046039671 @default.
- W2064865611 cites W2048269874 @default.
- W2064865611 cites W2049751249 @default.
- W2064865611 cites W2050432695 @default.
- W2064865611 cites W2061242076 @default.
- W2064865611 cites W2063461213 @default.
- W2064865611 cites W2065325638 @default.
- W2064865611 cites W2066175879 @default.
- W2064865611 cites W2071235600 @default.
- W2064865611 cites W2073320255 @default.
- W2064865611 cites W2073586399 @default.
- W2064865611 cites W2073775990 @default.
- W2064865611 cites W2080365423 @default.
- W2064865611 cites W2082392251 @default.
- W2064865611 cites W2084013211 @default.
- W2064865611 cites W2091692450 @default.
- W2064865611 cites W2097816713 @default.
- W2064865611 cites W2123324643 @default.
- W2064865611 cites W2125049970 @default.
- W2064865611 cites W2131819942 @default.
- W2064865611 cites W2141636487 @default.
- W2064865611 cites W2159877238 @default.
- W2064865611 cites W2166667723 @default.
- W2064865611 cites W2187636587 @default.
- W2064865611 cites W2325395104 @default.
- W2064865611 cites W34321498 @default.
- W2064865611 cites W4240156246 @default.
- W2064865611 cites W4255262345 @default.
- W2064865611 cites W4255725031 @default.
- W2064865611 cites W4361866700 @default.
- W2064865611 doi "https://doi.org/10.1016/j.powtec.2008.04.037" @default.
- W2064865611 hasPublicationYear "2008" @default.
- W2064865611 type Work @default.
- W2064865611 sameAs 2064865611 @default.
- W2064865611 citedByCount "277" @default.
- W2064865611 countsByYear W20648656112012 @default.
- W2064865611 countsByYear W20648656112013 @default.
- W2064865611 countsByYear W20648656112014 @default.
- W2064865611 countsByYear W20648656112015 @default.
- W2064865611 countsByYear W20648656112016 @default.
- W2064865611 countsByYear W20648656112017 @default.
- W2064865611 countsByYear W20648656112018 @default.
- W2064865611 countsByYear W20648656112019 @default.
- W2064865611 countsByYear W20648656112020 @default.
- W2064865611 countsByYear W20648656112021 @default.
- W2064865611 countsByYear W20648656112022 @default.
- W2064865611 countsByYear W20648656112023 @default.
- W2064865611 crossrefType "journal-article" @default.
- W2064865611 hasAuthorship W2064865611A5013514693 @default.
- W2064865611 hasAuthorship W2064865611A5024603574 @default.
- W2064865611 hasAuthorship W2064865611A5049371508 @default.
- W2064865611 hasAuthorship W2064865611A5065697316 @default.
- W2064865611 hasConcept C111368507 @default.
- W2064865611 hasConcept C121332964 @default.
- W2064865611 hasConcept C127313418 @default.
- W2064865611 hasConcept C1276947 @default.
- W2064865611 hasConcept C136197465 @default.
- W2064865611 hasConcept C154945302 @default.
- W2064865611 hasConcept C159985019 @default.
- W2064865611 hasConcept C171872576 @default.
- W2064865611 hasConcept C17744445 @default.
- W2064865611 hasConcept C192562407 @default.
- W2064865611 hasConcept C199539241 @default.