Matches in SemOpenAlex for { <https://semopenalex.org/work/W2064904501> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2064904501 endingPage "692" @default.
- W2064904501 startingPage "674" @default.
- W2064904501 abstract "Learning gradients is one approach for variable selection and feature covariation estimation when dealing with large data of many variables or coordinates. In a classification setting involving a convex loss function, a possible algorithm for gradient learning is implemented by solving convex quadratic programming optimization problems induced by regularization schemes in reproducing kernel Hilbert spaces. The complexity for such an algorithm might be very high when the number of variables or samples is huge. We introduce a gradient descent algorithm for gradient learning in classification. The implementation of this algorithm is simple and its convergence is elegantly studied. Explicit learning rates are presented in terms of the regularization parameter and the step size. Deep analysis for approximation by reproducing kernel Hilbert spaces under some mild conditions on the probability measure for sampling allows us to deal with a general class of convex loss functions." @default.
- W2064904501 created "2016-06-24" @default.
- W2064904501 creator A5006802589 @default.
- W2064904501 creator A5033196884 @default.
- W2064904501 creator A5080454637 @default.
- W2064904501 date "2009-12-01" @default.
- W2064904501 modified "2023-10-17" @default.
- W2064904501 title "Gradient learning in a classification setting by gradient descent" @default.
- W2064904501 cites W1968436459 @default.
- W2064904501 cites W1970781863 @default.
- W2064904501 cites W1982032418 @default.
- W2064904501 cites W1994655188 @default.
- W2064904501 cites W2000021956 @default.
- W2064904501 cites W2027057364 @default.
- W2064904501 cites W2033855314 @default.
- W2064904501 cites W2071647699 @default.
- W2064904501 cites W2081557347 @default.
- W2064904501 cites W2112531253 @default.
- W2064904501 cites W2150450267 @default.
- W2064904501 doi "https://doi.org/10.1016/j.jat.2008.12.002" @default.
- W2064904501 hasPublicationYear "2009" @default.
- W2064904501 type Work @default.
- W2064904501 sameAs 2064904501 @default.
- W2064904501 citedByCount "10" @default.
- W2064904501 countsByYear W20649045012012 @default.
- W2064904501 countsByYear W20649045012013 @default.
- W2064904501 countsByYear W20649045012015 @default.
- W2064904501 countsByYear W20649045012016 @default.
- W2064904501 countsByYear W20649045012021 @default.
- W2064904501 countsByYear W20649045012022 @default.
- W2064904501 countsByYear W20649045012023 @default.
- W2064904501 crossrefType "journal-article" @default.
- W2064904501 hasAuthorship W2064904501A5006802589 @default.
- W2064904501 hasAuthorship W2064904501A5033196884 @default.
- W2064904501 hasAuthorship W2064904501A5080454637 @default.
- W2064904501 hasBestOaLocation W20649045011 @default.
- W2064904501 hasConcept C115680565 @default.
- W2064904501 hasConcept C126255220 @default.
- W2064904501 hasConcept C153258448 @default.
- W2064904501 hasConcept C153294291 @default.
- W2064904501 hasConcept C154945302 @default.
- W2064904501 hasConcept C205649164 @default.
- W2064904501 hasConcept C2776637919 @default.
- W2064904501 hasConcept C28826006 @default.
- W2064904501 hasConcept C33923547 @default.
- W2064904501 hasConcept C41008148 @default.
- W2064904501 hasConcept C50644808 @default.
- W2064904501 hasConceptScore W2064904501C115680565 @default.
- W2064904501 hasConceptScore W2064904501C126255220 @default.
- W2064904501 hasConceptScore W2064904501C153258448 @default.
- W2064904501 hasConceptScore W2064904501C153294291 @default.
- W2064904501 hasConceptScore W2064904501C154945302 @default.
- W2064904501 hasConceptScore W2064904501C205649164 @default.
- W2064904501 hasConceptScore W2064904501C2776637919 @default.
- W2064904501 hasConceptScore W2064904501C28826006 @default.
- W2064904501 hasConceptScore W2064904501C33923547 @default.
- W2064904501 hasConceptScore W2064904501C41008148 @default.
- W2064904501 hasConceptScore W2064904501C50644808 @default.
- W2064904501 hasIssue "2" @default.
- W2064904501 hasLocation W20649045011 @default.
- W2064904501 hasOpenAccess W2064904501 @default.
- W2064904501 hasPrimaryLocation W20649045011 @default.
- W2064904501 hasRelatedWork W2039084584 @default.
- W2064904501 hasRelatedWork W2044847021 @default.
- W2064904501 hasRelatedWork W2760200308 @default.
- W2064904501 hasRelatedWork W2981371024 @default.
- W2064904501 hasRelatedWork W3083427607 @default.
- W2064904501 hasRelatedWork W3094977604 @default.
- W2064904501 hasRelatedWork W3114583818 @default.
- W2064904501 hasRelatedWork W3206013905 @default.
- W2064904501 hasRelatedWork W4232782753 @default.
- W2064904501 hasRelatedWork W4289522847 @default.
- W2064904501 hasVolume "161" @default.
- W2064904501 isParatext "false" @default.
- W2064904501 isRetracted "false" @default.
- W2064904501 magId "2064904501" @default.
- W2064904501 workType "article" @default.