Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065016722> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2065016722 endingPage "551" @default.
- W2065016722 startingPage "546" @default.
- W2065016722 abstract "Summary Objectives: Automated understanding of clinical records is a challenging task involving various legal and technical difficulties. Clinical free text is inherently redundant, unstructured, and full of acronyms, abbreviations and domain-specific language which make it challenging to mine automatically. There is much effort in the field focused on creating specialized ontology, lexicons and heuristics based on expert knowledge of the domain. However, ad-hoc solutions poorly generalize across diseases or diagnoses. This paper presents a successful approach for a rapid prototyping of a diagnosis classifier based on a popular computational linguistics platform. Methods: The corpus consists of several hundred of full length discharge summaries provided by Partners Healthcare. The goal is to identify a diagnosis and assign co-morbidity. Our approach is based on the rapid implementation of a logistic regression classifier using an existing toolkit: LingPipe (http://alias-i.com/lingpipe). We implement and compare three different classifiers. The baseline approach uses character 5-grams as features. The second approach uses a bag-of-words representation enriched with a small additional set of features. The third approach reduces a feature set to the most informative features according to the information content. Results: The proposed systems achieve high performance (average F-micro 0.92) for the task. We discuss the relative merit of the three classifiers. Supplementary material with detailed results is available at: http://decsai.ugr.es/~ccano/LR/supplementary_material/ Conclusions: We show that our methodology for rapid prototyping of a domain-unaware system is effective for building an accurate classifier for clinical records." @default.
- W2065016722 created "2016-06-24" @default.
- W2065016722 creator A5009829125 @default.
- W2065016722 creator A5061181757 @default.
- W2065016722 creator A5091208273 @default.
- W2065016722 date "2009-01-01" @default.
- W2065016722 modified "2023-09-25" @default.
- W2065016722 title "Automated Identification of Diagnosis and Co-morbidity in Clinical Records" @default.
- W2065016722 cites W1542760790 @default.
- W2065016722 cites W1602694398 @default.
- W2065016722 cites W1686401129 @default.
- W2065016722 cites W1870686808 @default.
- W2065016722 cites W1871067837 @default.
- W2065016722 cites W1965789647 @default.
- W2065016722 cites W2093066501 @default.
- W2065016722 cites W2103333826 @default.
- W2065016722 cites W2128004504 @default.
- W2065016722 cites W2134229003 @default.
- W2065016722 cites W2160987310 @default.
- W2065016722 cites W27189800 @default.
- W2065016722 cites W1542491098 @default.
- W2065016722 doi "https://doi.org/10.3414/me0615" @default.
- W2065016722 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19696949" @default.
- W2065016722 hasPublicationYear "2009" @default.
- W2065016722 type Work @default.
- W2065016722 sameAs 2065016722 @default.
- W2065016722 citedByCount "5" @default.
- W2065016722 countsByYear W20650167222015 @default.
- W2065016722 countsByYear W20650167222016 @default.
- W2065016722 countsByYear W20650167222018 @default.
- W2065016722 crossrefType "journal-article" @default.
- W2065016722 hasAuthorship W2065016722A5009829125 @default.
- W2065016722 hasAuthorship W2065016722A5061181757 @default.
- W2065016722 hasAuthorship W2065016722A5091208273 @default.
- W2065016722 hasConcept C108583219 @default.
- W2065016722 hasConcept C111919701 @default.
- W2065016722 hasConcept C119857082 @default.
- W2065016722 hasConcept C124101348 @default.
- W2065016722 hasConcept C127705205 @default.
- W2065016722 hasConcept C142724271 @default.
- W2065016722 hasConcept C154945302 @default.
- W2065016722 hasConcept C204321447 @default.
- W2065016722 hasConcept C23123220 @default.
- W2065016722 hasConcept C2778827112 @default.
- W2065016722 hasConcept C41008148 @default.
- W2065016722 hasConcept C534262118 @default.
- W2065016722 hasConcept C71924100 @default.
- W2065016722 hasConcept C95623464 @default.
- W2065016722 hasConceptScore W2065016722C108583219 @default.
- W2065016722 hasConceptScore W2065016722C111919701 @default.
- W2065016722 hasConceptScore W2065016722C119857082 @default.
- W2065016722 hasConceptScore W2065016722C124101348 @default.
- W2065016722 hasConceptScore W2065016722C127705205 @default.
- W2065016722 hasConceptScore W2065016722C142724271 @default.
- W2065016722 hasConceptScore W2065016722C154945302 @default.
- W2065016722 hasConceptScore W2065016722C204321447 @default.
- W2065016722 hasConceptScore W2065016722C23123220 @default.
- W2065016722 hasConceptScore W2065016722C2778827112 @default.
- W2065016722 hasConceptScore W2065016722C41008148 @default.
- W2065016722 hasConceptScore W2065016722C534262118 @default.
- W2065016722 hasConceptScore W2065016722C71924100 @default.
- W2065016722 hasConceptScore W2065016722C95623464 @default.
- W2065016722 hasIssue "06" @default.
- W2065016722 hasLocation W20650167221 @default.
- W2065016722 hasLocation W20650167222 @default.
- W2065016722 hasOpenAccess W2065016722 @default.
- W2065016722 hasPrimaryLocation W20650167221 @default.
- W2065016722 hasRelatedWork W2556319748 @default.
- W2065016722 hasRelatedWork W2773616286 @default.
- W2065016722 hasRelatedWork W2911455822 @default.
- W2065016722 hasRelatedWork W2942650110 @default.
- W2065016722 hasRelatedWork W2968586400 @default.
- W2065016722 hasRelatedWork W3021430260 @default.
- W2065016722 hasRelatedWork W3196324843 @default.
- W2065016722 hasRelatedWork W3200179079 @default.
- W2065016722 hasRelatedWork W4281986673 @default.
- W2065016722 hasRelatedWork W4309637067 @default.
- W2065016722 hasVolume "48" @default.
- W2065016722 isParatext "false" @default.
- W2065016722 isRetracted "false" @default.
- W2065016722 magId "2065016722" @default.
- W2065016722 workType "article" @default.