Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065074447> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2065074447 abstract "This paper presents an application of morphology neural networks to a template learning problem. Morphology neural networks are a nonlinear version of the familiar artificial neural networks. Typically, an artificial neural net is used to solve pattern classification problems One useful characterization of many neural network algorithms is the ability to 'learn' to respond correctly to new data based only on a selection of known data responses. For example, in the multilayer perceptron model, the 'learning' is a procedure whereby parameters are fed back from output to input neurons and the weights changed to give a better response. The morphological neural net in this paper solves a different type of image processing problem. Specifically, given an input image and an output image which corresponds to a dilated version of the input, one would like to determine what template produced the output. The problem corresponds to teaching the network to solve for the weights in a morphological net, as the weights are the template's values. A reasonable method has been investigated for the boolean case; in this paper results are presented for gray scale images. Image algebra has been shown to provide a succinct expression of neural networks algorithms and also to allow a generalization of neural networks, and thus the authors describe the algorithm in image algebra. The remainder of the paper gives a brief discussion of image algebra, the relationship of image algebra and neural networks, a recap of the dilation morphology neural network boolean for boolean images, and the generalization to grayscale data." @default.
- W2065074447 created "2016-06-24" @default.
- W2065074447 creator A5010268023 @default.
- W2065074447 creator A5053739372 @default.
- W2065074447 date "1991-07-01" @default.
- W2065074447 modified "2023-09-26" @default.
- W2065074447 title "<title>Template learning in morphological neural nets</title>" @default.
- W2065074447 doi "https://doi.org/10.1117/12.46114" @default.
- W2065074447 hasPublicationYear "1991" @default.
- W2065074447 type Work @default.
- W2065074447 sameAs 2065074447 @default.
- W2065074447 citedByCount "5" @default.
- W2065074447 countsByYear W20650744472012 @default.
- W2065074447 crossrefType "proceedings-article" @default.
- W2065074447 hasAuthorship W2065074447A5010268023 @default.
- W2065074447 hasAuthorship W2065074447A5053739372 @default.
- W2065074447 hasConcept C11413529 @default.
- W2065074447 hasConcept C115961682 @default.
- W2065074447 hasConcept C134306372 @default.
- W2065074447 hasConcept C153180895 @default.
- W2065074447 hasConcept C154945302 @default.
- W2065074447 hasConcept C175202392 @default.
- W2065074447 hasConcept C177148314 @default.
- W2065074447 hasConcept C177973122 @default.
- W2065074447 hasConcept C185568154 @default.
- W2065074447 hasConcept C33923547 @default.
- W2065074447 hasConcept C41008148 @default.
- W2065074447 hasConcept C50644808 @default.
- W2065074447 hasConcept C60908668 @default.
- W2065074447 hasConcept C78201319 @default.
- W2065074447 hasConcept C812465 @default.
- W2065074447 hasConcept C9417928 @default.
- W2065074447 hasConceptScore W2065074447C11413529 @default.
- W2065074447 hasConceptScore W2065074447C115961682 @default.
- W2065074447 hasConceptScore W2065074447C134306372 @default.
- W2065074447 hasConceptScore W2065074447C153180895 @default.
- W2065074447 hasConceptScore W2065074447C154945302 @default.
- W2065074447 hasConceptScore W2065074447C175202392 @default.
- W2065074447 hasConceptScore W2065074447C177148314 @default.
- W2065074447 hasConceptScore W2065074447C177973122 @default.
- W2065074447 hasConceptScore W2065074447C185568154 @default.
- W2065074447 hasConceptScore W2065074447C33923547 @default.
- W2065074447 hasConceptScore W2065074447C41008148 @default.
- W2065074447 hasConceptScore W2065074447C50644808 @default.
- W2065074447 hasConceptScore W2065074447C60908668 @default.
- W2065074447 hasConceptScore W2065074447C78201319 @default.
- W2065074447 hasConceptScore W2065074447C812465 @default.
- W2065074447 hasConceptScore W2065074447C9417928 @default.
- W2065074447 hasLocation W20650744471 @default.
- W2065074447 hasOpenAccess W2065074447 @default.
- W2065074447 hasPrimaryLocation W20650744471 @default.
- W2065074447 hasRelatedWork W1566053249 @default.
- W2065074447 hasRelatedWork W1591671037 @default.
- W2065074447 hasRelatedWork W1595984106 @default.
- W2065074447 hasRelatedWork W1966639131 @default.
- W2065074447 hasRelatedWork W1975025300 @default.
- W2065074447 hasRelatedWork W2007882983 @default.
- W2065074447 hasRelatedWork W2044029912 @default.
- W2065074447 hasRelatedWork W2065074447 @default.
- W2065074447 hasRelatedWork W2374760752 @default.
- W2065074447 hasRelatedWork W3128183380 @default.
- W2065074447 isParatext "false" @default.
- W2065074447 isRetracted "false" @default.
- W2065074447 magId "2065074447" @default.
- W2065074447 workType "article" @default.