Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065112109> ?p ?o ?g. }
- W2065112109 abstract "Single molecule experiments have added a new dimension to the exploration of complex biochemical behavior (Bustamante et al., 2003). By observing reactions at their singular constituent level, new windows into microscopic behavior were opened, that heretofore were unavailable with standard bulk techniques due to their inherent ensemble averaging. Elegant works include the characterization of various molecular motors such as kinesin (Visscher et al., 1999), RNA polymerase (Wang et al., 1998), DNA polymerase (Maier et al., 2000; Wuite et al., 2000), and F1-ATPase (Yasuda et al., 1998). Other works concentrated on the observation of structural effects induced by proteins on DNA such as formation of loops (Finzi and Gelles, 1995; Lia et al., 2003) and nucleosomes' disruption (Brower-Toland et al., 2002). During the last few years our lab has utilized single molecule elasticity measurements to characterize the sequence nonspecific interaction of three nucleoid-associated proteins IHF, H-NS, and HU with DNA (Ali et al., 2001; Amit et al., 2003; B. Schnurr, R. Amit, A. B. Oppenheim, and J. Stavans, unpublished). We gained new insight into both the microscopic interaction mechanism and large-scale elastic effects induced by the binding of many such proteins on a single molecule of λ-DNA, with important implications for nucleoid architecture and function.In a recent letter (Dame and Wuite, 2003) question the validity of single molecule methodology as compared with more standard bulk techniques by alleging a purported “single molecule effect.” Specifically, they bring to question results obtained in our study on the interaction of H-NS with DNA (Amit et al., 2003). In our work, we provided evidence for H-NS polymerization on DNA, resulting in a complex of higher bending rigidity than bare DNA. H-NS polymerization is consistent with its functions in silencing (Falconi et al., 1998), and its response to changing ionic conditions (Williams and Rimsky, 1997) and temperature (McLeod and Johnson, 2001). In addition, polymerization has been observed directly by electron microscopy (Tupper et al., 1994). However, the H-NS polymerization mechanism appears inconsistent with 1), previous notions that implicate H-NS in the compaction of the nucleoid (Spassky et al., 1984) and 2), with recent experiments by Dame et al. (2000, 2001) and Schneider et al. (2001) in which H-NS bridging between distal DNA segments has been observed.Dame and Wuite asserted that single molecule experiments miss certain regimes of behavior due to the large excess of protein over binding sites on DNA (Dame and Wuite, 2003). Note that standard bulk DNA binding assays are normally carried out in solution conditions that contain a 100–1000-fold excess of ligand to substrate (Liu-Johnson and Gartenberg, 1986). For the case of the DNA-H-NS complexes observed in our study, Dame and Wuite claimed that the large excess of H-NS over DNA places our system in saturating or near-saturating conditions, thereby precluding any observation of H-NS-induced compaction.In this Letter we claim that within the range of change of protein concentrations used in our experiments, we span the full behavior between that of bare DNA to that which is characteristic of near-saturation conditions. We plot in Fig. 1 the degree of saturation ν as a function of total protein concentration Ptot, for parameters relevant to our experiment (KD ∼ 1 μM and total DNA Dtot = 10−11 M). Previous measurements of the dissociation constant of H-NS to nonspecific sites lie within the range 0.5–1.0 μM (Rimsky et al., 2001; Umanski et al., 2002). This curve has been computed using the same equation for the fractional occupancy ν employed by Dame and Wuite to compute the curves of Fig. 2 in their Letter, and corresponds to the height of the plateau in their curves as Ptot is varied for fixed KD and Dtot:FIGURE 1Fractional occupancy ν as function of total protein concentration Ptot, for KD = 10−6 M and a total DNA concentration of 10−11 M.The near equality applies very well under the condition [Ptot]≫[Dtot], which is true in our experiments. Fig. 1 shows that ν changes from negligible values to values near 1, as Ptot changes from 10−7 to 10−5 M. Note that the two-decade range of Ptot brackets KD. Consistently with this, our experimental results indeed exhibit a smooth variation in DNA end-to-end extension within the same range of Ptot, and not an abrupt change to near-saturation behavior. Our results together with those of others suggest that H-NS may have pleiotropic effects in vivo. H-NS can both bridge between distal DNA segments and polymerize along double-stranded DNA tracts.Single molecule methodology has proven itself over the last decade to be extremely beneficial for the elucidation of complex biochemical behavior providing startling insights, consistent with bulk biochemical experiments. In this respect, the exploration of the architecture of both the bacterial nucleoid and eukaryotic chromatin has taken a major step forward due to the introduction of single molecule biophysical techniques. Specifically, the characterization of elastic characteristics induced by sequence-nonspecific interactions of proteins with DNA at the single molecule level has proved to be a tool that sheds important new light on structural and organizational problems that heretofore have gone largely unexplored. The wealth of new information is indeed providing a comprehensive new understanding to key, albeit old, problems." @default.
- W2065112109 created "2016-06-24" @default.
- W2065112109 creator A5042926209 @default.
- W2065112109 creator A5069806526 @default.
- W2065112109 creator A5086652667 @default.
- W2065112109 date "2004-08-01" @default.
- W2065112109 modified "2023-10-18" @default.
- W2065112109 title "Single Molecule Elasticity Measurements: A Biophysical Approach to Bacterial Nucleoid Organization" @default.
- W2065112109 cites W1487659884 @default.
- W2065112109 cites W1619891693 @default.
- W2065112109 cites W1662647860 @default.
- W2065112109 cites W1926040442 @default.
- W2065112109 cites W1964886610 @default.
- W2065112109 cites W1975131739 @default.
- W2065112109 cites W1977778400 @default.
- W2065112109 cites W1987697568 @default.
- W2065112109 cites W2000215876 @default.
- W2065112109 cites W2009223240 @default.
- W2065112109 cites W2010912319 @default.
- W2065112109 cites W2024316435 @default.
- W2065112109 cites W2025267562 @default.
- W2065112109 cites W2036098864 @default.
- W2065112109 cites W2039270960 @default.
- W2065112109 cites W2045696781 @default.
- W2065112109 cites W2051764674 @default.
- W2065112109 cites W2083584270 @default.
- W2065112109 cites W2113253885 @default.
- W2065112109 cites W2132315489 @default.
- W2065112109 cites W2135646930 @default.
- W2065112109 cites W2136440044 @default.
- W2065112109 cites W2155232113 @default.
- W2065112109 doi "https://doi.org/10.1529/biophysj.104.039503" @default.
- W2065112109 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1304477" @default.
- W2065112109 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15298941" @default.
- W2065112109 hasPublicationYear "2004" @default.
- W2065112109 type Work @default.
- W2065112109 sameAs 2065112109 @default.
- W2065112109 citedByCount "12" @default.
- W2065112109 countsByYear W20651121092018 @default.
- W2065112109 countsByYear W20651121092019 @default.
- W2065112109 crossrefType "journal-article" @default.
- W2065112109 hasAuthorship W2065112109A5042926209 @default.
- W2065112109 hasAuthorship W2065112109A5069806526 @default.
- W2065112109 hasAuthorship W2065112109A5086652667 @default.
- W2065112109 hasBestOaLocation W20651121091 @default.
- W2065112109 hasConcept C104317684 @default.
- W2065112109 hasConcept C119473381 @default.
- W2065112109 hasConcept C121332964 @default.
- W2065112109 hasConcept C121854251 @default.
- W2065112109 hasConcept C12554922 @default.
- W2065112109 hasConcept C171250308 @default.
- W2065112109 hasConcept C178790620 @default.
- W2065112109 hasConcept C185592680 @default.
- W2065112109 hasConcept C192562407 @default.
- W2065112109 hasConcept C2776449523 @default.
- W2065112109 hasConcept C32909587 @default.
- W2065112109 hasConcept C53642103 @default.
- W2065112109 hasConcept C547475151 @default.
- W2065112109 hasConcept C552990157 @default.
- W2065112109 hasConcept C55493867 @default.
- W2065112109 hasConcept C67705224 @default.
- W2065112109 hasConcept C70721500 @default.
- W2065112109 hasConcept C8010536 @default.
- W2065112109 hasConcept C82381507 @default.
- W2065112109 hasConcept C86803240 @default.
- W2065112109 hasConcept C97355855 @default.
- W2065112109 hasConceptScore W2065112109C104317684 @default.
- W2065112109 hasConceptScore W2065112109C119473381 @default.
- W2065112109 hasConceptScore W2065112109C121332964 @default.
- W2065112109 hasConceptScore W2065112109C121854251 @default.
- W2065112109 hasConceptScore W2065112109C12554922 @default.
- W2065112109 hasConceptScore W2065112109C171250308 @default.
- W2065112109 hasConceptScore W2065112109C178790620 @default.
- W2065112109 hasConceptScore W2065112109C185592680 @default.
- W2065112109 hasConceptScore W2065112109C192562407 @default.
- W2065112109 hasConceptScore W2065112109C2776449523 @default.
- W2065112109 hasConceptScore W2065112109C32909587 @default.
- W2065112109 hasConceptScore W2065112109C53642103 @default.
- W2065112109 hasConceptScore W2065112109C547475151 @default.
- W2065112109 hasConceptScore W2065112109C552990157 @default.
- W2065112109 hasConceptScore W2065112109C55493867 @default.
- W2065112109 hasConceptScore W2065112109C67705224 @default.
- W2065112109 hasConceptScore W2065112109C70721500 @default.
- W2065112109 hasConceptScore W2065112109C8010536 @default.
- W2065112109 hasConceptScore W2065112109C82381507 @default.
- W2065112109 hasConceptScore W2065112109C86803240 @default.
- W2065112109 hasConceptScore W2065112109C97355855 @default.
- W2065112109 hasLocation W20651121091 @default.
- W2065112109 hasLocation W20651121092 @default.
- W2065112109 hasLocation W20651121093 @default.
- W2065112109 hasLocation W20651121094 @default.
- W2065112109 hasOpenAccess W2065112109 @default.
- W2065112109 hasPrimaryLocation W20651121091 @default.
- W2065112109 hasRelatedWork W1907445040 @default.
- W2065112109 hasRelatedWork W2018256148 @default.
- W2065112109 hasRelatedWork W2122408733 @default.
- W2065112109 hasRelatedWork W2273575022 @default.
- W2065112109 hasRelatedWork W2330525110 @default.
- W2065112109 hasRelatedWork W2951170475 @default.
- W2065112109 hasRelatedWork W2979573354 @default.