Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065145416> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2065145416 abstract "In this paper, several theorems are proved concerning the concepts of expansiveness and asymptoticity from topological dynamics. The results are derived using the techniques the author developed in a previous paper in this journal. In [8], this author showed how the concept of an expansive homeomorphism could be generalized to that of an expansive continuous relation (called an expansive mapping), and that several of the well-known theorems on expansive homeomorphisms generalized in this new setting. One reason expansive mappings are important is that they furnish the only routine technique (by using the shift transformation) for producing expansive homeomorphisms. One surprising result the technique has yielded is a techhomologically trivial continuum supporting an expansive homeomorphism. (See [8].) It is useful to know how expansive mappings resemble expansive homeomorphisms so that one might gain some insight as to what surprises this technique might not produce. In this paper, several more well-known theorems will be generalized by using the tools developed in [8]. For reference purposes, the basic definitions and techniques from [8] will now be given. If X is a metric space with metric d, and if f is a homeomorphism of X onto itself, then f is said to be expansive on X with expansive constant 6 > 0 if x, y E X, x # y, implies d(f '(x), f f(y)) > 8 for some integer n. Distinct points x and y are said to be positively (negatively) asymptotic under f if for each E > 0, there is an integer N such that n > N (n 0 such that d(x,y) < -q implies f(y) C N.) Henceforth, a continuous multivalued transformation will simply be called a mapping. DEFINITION 1. Let x E X. The orbit of x under f is defined by O(x) = UOO Of n (x). DEFINITION 2. Let x E X. A suborbit of x under f is a set of the form Received by the editors October 18, 1975 and, in revised form, December 15, 1975. AMS (MOS) subject classifications (1970). Primary 54H20; Secondary 54C60, 54C65." @default.
- W2065145416 created "2016-06-24" @default.
- W2065145416 creator A5009867814 @default.
- W2065145416 date "1976-01-01" @default.
- W2065145416 modified "2023-09-26" @default.
- W2065145416 title "Further results on expansive mappings" @default.
- W2065145416 cites W1973420554 @default.
- W2065145416 cites W2033092087 @default.
- W2065145416 cites W2050649830 @default.
- W2065145416 cites W2063516796 @default.
- W2065145416 cites W2319717704 @default.
- W2065145416 cites W2328250927 @default.
- W2065145416 doi "https://doi.org/10.1090/s0002-9939-1976-0436103-1" @default.
- W2065145416 hasPublicationYear "1976" @default.
- W2065145416 type Work @default.
- W2065145416 sameAs 2065145416 @default.
- W2065145416 citedByCount "4" @default.
- W2065145416 countsByYear W20651454162012 @default.
- W2065145416 crossrefType "journal-article" @default.
- W2065145416 hasAuthorship W2065145416A5009867814 @default.
- W2065145416 hasBestOaLocation W20651454161 @default.
- W2065145416 hasConcept C10728891 @default.
- W2065145416 hasConcept C114614502 @default.
- W2065145416 hasConcept C118615104 @default.
- W2065145416 hasConcept C121332964 @default.
- W2065145416 hasConcept C198043062 @default.
- W2065145416 hasConcept C199360897 @default.
- W2065145416 hasConcept C202444582 @default.
- W2065145416 hasConcept C2780502288 @default.
- W2065145416 hasConcept C30407753 @default.
- W2065145416 hasConcept C33923547 @default.
- W2065145416 hasConcept C41008148 @default.
- W2065145416 hasConcept C97137487 @default.
- W2065145416 hasConcept C97355855 @default.
- W2065145416 hasConceptScore W2065145416C10728891 @default.
- W2065145416 hasConceptScore W2065145416C114614502 @default.
- W2065145416 hasConceptScore W2065145416C118615104 @default.
- W2065145416 hasConceptScore W2065145416C121332964 @default.
- W2065145416 hasConceptScore W2065145416C198043062 @default.
- W2065145416 hasConceptScore W2065145416C199360897 @default.
- W2065145416 hasConceptScore W2065145416C202444582 @default.
- W2065145416 hasConceptScore W2065145416C2780502288 @default.
- W2065145416 hasConceptScore W2065145416C30407753 @default.
- W2065145416 hasConceptScore W2065145416C33923547 @default.
- W2065145416 hasConceptScore W2065145416C41008148 @default.
- W2065145416 hasConceptScore W2065145416C97137487 @default.
- W2065145416 hasConceptScore W2065145416C97355855 @default.
- W2065145416 hasLocation W20651454161 @default.
- W2065145416 hasOpenAccess W2065145416 @default.
- W2065145416 hasPrimaryLocation W20651454161 @default.
- W2065145416 hasRelatedWork W1494719483 @default.
- W2065145416 hasRelatedWork W2035213322 @default.
- W2065145416 hasRelatedWork W2057498047 @default.
- W2065145416 hasRelatedWork W2123726403 @default.
- W2065145416 hasRelatedWork W2142476974 @default.
- W2065145416 hasRelatedWork W2149019351 @default.
- W2065145416 hasRelatedWork W2168143138 @default.
- W2065145416 hasRelatedWork W2171890735 @default.
- W2065145416 hasRelatedWork W2197428860 @default.
- W2065145416 hasRelatedWork W2328031966 @default.
- W2065145416 hasRelatedWork W252558306 @default.
- W2065145416 hasRelatedWork W2548263816 @default.
- W2065145416 hasRelatedWork W2560146851 @default.
- W2065145416 hasRelatedWork W2963843504 @default.
- W2065145416 hasRelatedWork W2974383617 @default.
- W2065145416 hasRelatedWork W2985837028 @default.
- W2065145416 hasRelatedWork W3048068345 @default.
- W2065145416 hasRelatedWork W3087960553 @default.
- W2065145416 hasRelatedWork W3146315547 @default.
- W2065145416 hasRelatedWork W2565012766 @default.
- W2065145416 isParatext "false" @default.
- W2065145416 isRetracted "false" @default.
- W2065145416 magId "2065145416" @default.
- W2065145416 workType "article" @default.