Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065161007> ?p ?o ?g. }
- W2065161007 endingPage "239" @default.
- W2065161007 startingPage "221" @default.
- W2065161007 abstract "The slow diffusion of elements to the porewater from unreacted cores of cement minerals ensures that the solution and solid phases of a cement/water system are in a transient rather than in an equilibrium state. Nevertheless, solution/mineral equilibrium is closely attained soon after the contact of water with cementitious material even though the composition of both phases are dynamically evolving. Chemical equilibrium models can thus have an important role in representing the chemical composition of cement/water systems. There are obstacles, however, in the application of equilibria programs towards this purpose. Although there are kinetic models to predict the release of alkalies from hydrating cement particles, there is no ion sorption or solid solution model to describe the uptake of alkalies from the pore solution by CSH. Because Na and K are the principal cations in cement pore solutions, their concentrations exert the most control on the porewater pH. Since the solubility of the principal hydrated cement minerals are pH dependent, an inability to model alkali levels translates into an inability to model the concentration of most other dissolved constituents. More experimental data are needed to construct a thermodynamic model for alkali association with CSH because the data that are available are not in agreement. In the meantime, an empirical approach to the problem has been offered. Thermodynamic data for the aluminum sulphate minerals, ettringite and monsulphate, indicate that ettringite should be the stable phase in cement porewater solutions, yet monosulphate is the phase generally present in mature cement pastes. The reasons for this are not clear, but it may be that OH − substitution for SO 4 2− in monosulphate at high pH's inverts its thermodynamic stability with respect to ettringite. Solubility data of the C 4 AH 13 -monosulphate solid solution series are needed to address this problem. Equilibria modelling and experimental data of CSH compositions in alkali solutions indicate that CSH in cement porewater solutions should have a Ca/Si ratio of around 1.1, much lower than values usually reported from SEM measurements on actual pastes (avg. 1.6). However, SEM also yields results over a wide range (1.0–2.0) and it may be that the CSH and Ca(OH) 2 reaction products of C 2 S and C 3 S hydration in a cement paste are so intimately intermixed that some amount of Ca(OH) 2 invariably gets included in analyses of CSH under the electron beam. This might explain both the large variation and higher values obtained in SEM measurements on pastes compared to experimental data on CSH/solution equilibrations." @default.
- W2065161007 created "2016-06-24" @default.
- W2065161007 creator A5075006338 @default.
- W2065161007 date "1992-01-01" @default.
- W2065161007 modified "2023-10-14" @default.
- W2065161007 title "Problems and approaches to the prediction of the chemical composition in cement/water systems" @default.
- W2065161007 cites W1543803016 @default.
- W2065161007 cites W1963832665 @default.
- W2065161007 cites W1965486398 @default.
- W2065161007 cites W1974910398 @default.
- W2065161007 cites W1975358304 @default.
- W2065161007 cites W1991449021 @default.
- W2065161007 cites W1993900584 @default.
- W2065161007 cites W1994130836 @default.
- W2065161007 cites W1998394161 @default.
- W2065161007 cites W2009000238 @default.
- W2065161007 cites W2011158334 @default.
- W2065161007 cites W2011320431 @default.
- W2065161007 cites W2012391031 @default.
- W2065161007 cites W2018392892 @default.
- W2065161007 cites W2023290291 @default.
- W2065161007 cites W2027712651 @default.
- W2065161007 cites W2033474451 @default.
- W2065161007 cites W2037651370 @default.
- W2065161007 cites W2044605641 @default.
- W2065161007 cites W2052443656 @default.
- W2065161007 cites W2060490340 @default.
- W2065161007 cites W2061869571 @default.
- W2065161007 cites W2069561221 @default.
- W2065161007 cites W2070131188 @default.
- W2065161007 cites W2070902768 @default.
- W2065161007 cites W2079248550 @default.
- W2065161007 cites W2083612741 @default.
- W2065161007 cites W2085797740 @default.
- W2065161007 cites W2087411745 @default.
- W2065161007 cites W2093206577 @default.
- W2065161007 cites W2096003472 @default.
- W2065161007 cites W2127424787 @default.
- W2065161007 cites W2127481995 @default.
- W2065161007 cites W2128978181 @default.
- W2065161007 cites W2159560648 @default.
- W2065161007 cites W2169100778 @default.
- W2065161007 cites W2169506673 @default.
- W2065161007 cites W2170480185 @default.
- W2065161007 cites W2170721574 @default.
- W2065161007 cites W2323523988 @default.
- W2065161007 cites W2327672541 @default.
- W2065161007 cites W2330104472 @default.
- W2065161007 cites W2332212470 @default.
- W2065161007 cites W2333212130 @default.
- W2065161007 doi "https://doi.org/10.1016/0956-053x(92)90050-s" @default.
- W2065161007 hasPublicationYear "1992" @default.
- W2065161007 type Work @default.
- W2065161007 sameAs 2065161007 @default.
- W2065161007 citedByCount "132" @default.
- W2065161007 countsByYear W20651610072012 @default.
- W2065161007 countsByYear W20651610072013 @default.
- W2065161007 countsByYear W20651610072014 @default.
- W2065161007 countsByYear W20651610072015 @default.
- W2065161007 countsByYear W20651610072016 @default.
- W2065161007 countsByYear W20651610072017 @default.
- W2065161007 countsByYear W20651610072018 @default.
- W2065161007 countsByYear W20651610072019 @default.
- W2065161007 countsByYear W20651610072021 @default.
- W2065161007 countsByYear W20651610072022 @default.
- W2065161007 countsByYear W20651610072023 @default.
- W2065161007 crossrefType "journal-article" @default.
- W2065161007 hasAuthorship W2065161007A5075006338 @default.
- W2065161007 hasConcept C121332964 @default.
- W2065161007 hasConcept C127413603 @default.
- W2065161007 hasConcept C150394285 @default.
- W2065161007 hasConcept C155574463 @default.
- W2065161007 hasConcept C178790620 @default.
- W2065161007 hasConcept C185592680 @default.
- W2065161007 hasConcept C191897082 @default.
- W2065161007 hasConcept C192562407 @default.
- W2065161007 hasConcept C199289684 @default.
- W2065161007 hasConcept C2776052592 @default.
- W2065161007 hasConcept C2779666059 @default.
- W2065161007 hasConcept C2780021121 @default.
- W2065161007 hasConcept C42360764 @default.
- W2065161007 hasConcept C44280652 @default.
- W2065161007 hasConcept C523993062 @default.
- W2065161007 hasConcept C56566620 @default.
- W2065161007 hasConcept C58445606 @default.
- W2065161007 hasConcept C69357855 @default.
- W2065161007 hasConcept C97355855 @default.
- W2065161007 hasConceptScore W2065161007C121332964 @default.
- W2065161007 hasConceptScore W2065161007C127413603 @default.
- W2065161007 hasConceptScore W2065161007C150394285 @default.
- W2065161007 hasConceptScore W2065161007C155574463 @default.
- W2065161007 hasConceptScore W2065161007C178790620 @default.
- W2065161007 hasConceptScore W2065161007C185592680 @default.
- W2065161007 hasConceptScore W2065161007C191897082 @default.
- W2065161007 hasConceptScore W2065161007C192562407 @default.
- W2065161007 hasConceptScore W2065161007C199289684 @default.
- W2065161007 hasConceptScore W2065161007C2776052592 @default.
- W2065161007 hasConceptScore W2065161007C2779666059 @default.