Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065185630> ?p ?o ?g. }
- W2065185630 abstract "Rapid development of high-throughput toxicogenomics technologies has created new approaches to screen environmental samples for mechanistic toxicity assessment. However, challenges remain in the analysis, especially clustering of the resulting high-dimensional data. Because of the lack of commonly accepted validation methods, it is difficult to compare clustering results between studies or to identify the key experimental or data features that impact the clustering results. We applied consensus clustering (CC), an approach that clusters the input data repeatedly through iterative resampling, and identifies frequently occurring high-confidence clusters. We used CC to analyze a set of high dimensional transcriptomics data with temporal resolution, which were generated using our E. coli whole-cell array system for a diverse variety of toxicants at different dose concentrations. The CC analysis allowed us to evaluate the clustering results' robustness and sensitivity against a number of conditions that represent the common variations in high-throughput experiments, including noisy data, subsets of treatments, subsets of reporter genes, and subsets of time points. We demonstrated the value of utilizing rich time-series data and underscored the importance of careful selection of sampling times for a given experimental system. The results also indicated that temporal data compression using our proposed Transcriptional Effect Level Index (TELI) concept followed by CC largely conserved the cluster resolution. We also found that for our cellular stress response ensemble-based high-throughput transcriptomics assay platform, the size and composition of the reporter gene set are critical factors that affect the resulting coherency of clusters. Taken together, these results demonstrated that more robust consensus clustering such as CC may be valuable in analyzing high-dimensional toxicogenomic data sets." @default.
- W2065185630 created "2016-06-24" @default.
- W2065185630 creator A5017730208 @default.
- W2065185630 creator A5018525322 @default.
- W2065185630 creator A5022710775 @default.
- W2065185630 creator A5070498910 @default.
- W2065185630 creator A5086302614 @default.
- W2065185630 date "2012-07-12" @default.
- W2065185630 modified "2023-09-27" @default.
- W2065185630 title "Analyzing High Dimensional Toxicogenomic Data Using Consensus Clustering" @default.
- W2065185630 cites W1513910506 @default.
- W2065185630 cites W1548779692 @default.
- W2065185630 cites W1583942422 @default.
- W2065185630 cites W1610085996 @default.
- W2065185630 cites W1968234458 @default.
- W2065185630 cites W1989297334 @default.
- W2065185630 cites W1990827580 @default.
- W2065185630 cites W1995459910 @default.
- W2065185630 cites W2010059017 @default.
- W2065185630 cites W2014545696 @default.
- W2065185630 cites W2017432477 @default.
- W2065185630 cites W2024100106 @default.
- W2065185630 cites W2026756548 @default.
- W2065185630 cites W2027948449 @default.
- W2065185630 cites W2036661308 @default.
- W2065185630 cites W2038186289 @default.
- W2065185630 cites W2038606570 @default.
- W2065185630 cites W2041473955 @default.
- W2065185630 cites W2056780622 @default.
- W2065185630 cites W2059238819 @default.
- W2065185630 cites W2059359814 @default.
- W2065185630 cites W2066541659 @default.
- W2065185630 cites W2076593383 @default.
- W2065185630 cites W2090801846 @default.
- W2065185630 cites W2091575730 @default.
- W2065185630 cites W2096305539 @default.
- W2065185630 cites W2103991913 @default.
- W2065185630 cites W2107318313 @default.
- W2065185630 cites W2115462905 @default.
- W2065185630 cites W2119387367 @default.
- W2065185630 cites W2122025333 @default.
- W2065185630 cites W2123009279 @default.
- W2065185630 cites W2128879247 @default.
- W2065185630 cites W2129066856 @default.
- W2065185630 cites W2130096284 @default.
- W2065185630 cites W2135187880 @default.
- W2065185630 cites W2135364554 @default.
- W2065185630 cites W2139655746 @default.
- W2065185630 cites W2141012957 @default.
- W2065185630 cites W2146973322 @default.
- W2065185630 cites W2164610579 @default.
- W2065185630 cites W2166399230 @default.
- W2065185630 cites W2170040895 @default.
- W2065185630 cites W2333105813 @default.
- W2065185630 cites W2334935531 @default.
- W2065185630 doi "https://doi.org/10.1021/es3000454" @default.
- W2065185630 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22703334" @default.
- W2065185630 hasPublicationYear "2012" @default.
- W2065185630 type Work @default.
- W2065185630 sameAs 2065185630 @default.
- W2065185630 citedByCount "10" @default.
- W2065185630 countsByYear W20651856302014 @default.
- W2065185630 countsByYear W20651856302015 @default.
- W2065185630 countsByYear W20651856302016 @default.
- W2065185630 countsByYear W20651856302017 @default.
- W2065185630 countsByYear W20651856302018 @default.
- W2065185630 countsByYear W20651856302020 @default.
- W2065185630 countsByYear W20651856302021 @default.
- W2065185630 countsByYear W20651856302023 @default.
- W2065185630 crossrefType "journal-article" @default.
- W2065185630 hasAuthorship W2065185630A5017730208 @default.
- W2065185630 hasAuthorship W2065185630A5018525322 @default.
- W2065185630 hasAuthorship W2065185630A5022710775 @default.
- W2065185630 hasAuthorship W2065185630A5070498910 @default.
- W2065185630 hasAuthorship W2065185630A5086302614 @default.
- W2065185630 hasConcept C104317684 @default.
- W2065185630 hasConcept C124101348 @default.
- W2065185630 hasConcept C150194340 @default.
- W2065185630 hasConcept C150921843 @default.
- W2065185630 hasConcept C154945302 @default.
- W2065185630 hasConcept C184509293 @default.
- W2065185630 hasConcept C186767784 @default.
- W2065185630 hasConcept C33704608 @default.
- W2065185630 hasConcept C41008148 @default.
- W2065185630 hasConcept C54355233 @default.
- W2065185630 hasConcept C58489278 @default.
- W2065185630 hasConcept C63479239 @default.
- W2065185630 hasConcept C70721500 @default.
- W2065185630 hasConcept C73555534 @default.
- W2065185630 hasConcept C86803240 @default.
- W2065185630 hasConcept C92835128 @default.
- W2065185630 hasConcept C93231420 @default.
- W2065185630 hasConcept C94641424 @default.
- W2065185630 hasConceptScore W2065185630C104317684 @default.
- W2065185630 hasConceptScore W2065185630C124101348 @default.
- W2065185630 hasConceptScore W2065185630C150194340 @default.
- W2065185630 hasConceptScore W2065185630C150921843 @default.
- W2065185630 hasConceptScore W2065185630C154945302 @default.
- W2065185630 hasConceptScore W2065185630C184509293 @default.
- W2065185630 hasConceptScore W2065185630C186767784 @default.