Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065227987> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2065227987 endingPage "214" @default.
- W2065227987 startingPage "186" @default.
- W2065227987 abstract "Maslov ray summation is ‘less local’ than ordinary ray theory, because the receiver waveform depends on non-Fermat or neighbouring rays and more information about the wavefront than just local Gaussian curvature. In this way, the Maslov solution is able to remain valid at caustics, where geometrical rays and corresponding stationary points of the Maslov phase coalesce. the wavefront information is expressed via the Legendre transformation, whereby the physical wavefront is represented as the envelope of a family of tangent ‘planes’ (Snell fronts). the actual form of the Snell fronts (true planes, sections of curves or surfaces, etc.) depends on the spatial coordinates used. Given a selection for the Snell fronts and Maslov phase, one can substitute the Maslov integral solution directly into the wave equation and obtain a transport equation for the Maslov amplitude. This direct substitution is analogous to that used in ordinary ray theory and avoids pseudo-differential operators. Sometimes the relative curvature of the physical wavefront and a tangential Snell front is zero. the envelope-forming process breaks down, because the local correspondence between the physical front and the Snell fronts is not one to one and invertible. This situation corresponds to a so-called ‘pseudo-caustic’ (slowness-domain caustic or telescopic point) in the Maslov solution. Pseudo-caustics are not real. A particular ray from the source may touch a pseudo-caustic at some time in one coordinate system, but in another system this ray will not have a pseudo-caustic (at the same time and place). It is easy to design a change of coordinates (e.g. from cartesian to curvilinear or polar) to deform a single-valued traveltime function appropriately, but a multi-valued or folded wavefront, as at a physical or real caustic, is less simple. Catastrophe theory is concerned with putting multi-valued functions into ‘normal forms’ which do not have psuedo-caustics. the manifold here is ‘Lagrangian’ and V. I. Arnold showed that a special type of deformation or ‘canonical transformation’ must be used. A ‘Lagrangian equivalence’ consists of a deformation of the ‘base’ (x-space) and/or the addition of a function on the base. the latter simply means factoring out an appropriate reference phase before Legendre transformation and we have found that this simple step is often sufficient for removing pseudo-caustics. It requires no new numerical work, only an inspection or understanding of the ray-tracing results at hand. We present some body-wave computations using the reference-phase technique for models with real caustics in 2-D and for a single-valued wavefront in 3-D. We point out that a Lagrangian equivalence may be used to turn a maximum of the Maslov phase function into a minimum. This has no effect on the frequency-domain solution, but may affect the causality of the computed waveform when the Chapman method is used to obtain the time-domain response. Causality is a property which one may need to impose explicitly. Only the non-delta or one-sided function part of the response (waveform tail) is affected by this consideration. Although zeroth-order Maslov theory correctly describes the severe waveform is clear from Secdistortion due to wavefront catastrophes, it may not adequately model the more subtle effects of smooth wavefront bending. Zeroth-order Maslov theory contains some but not all of the first-order (ω−1) terms of ordinary asymptotic ray theory. First-order Maslov theory is needed for complete consistency up to ω−1. Experimentation will several different zeroth-order Maslov representations is a simple, rapid way to ascertain the potential importance of thse more subtle waveform effects. If the waveform tails are too strong, the assumption that the Maslov (and ray theory) amplitude function can be expanded in powers of ω− may break down. Numerical integration of a wave equation is then necessary." @default.
- W2065227987 created "2016-06-24" @default.
- W2065227987 creator A5079413468 @default.
- W2065227987 creator A5086216061 @default.
- W2065227987 date "1993-04-01" @default.
- W2065227987 modified "2023-09-26" @default.
- W2065227987 title "Maslov Ray Summation, Pseudo-Caustics, Lagrangian Equivalence and Transient Seismic Waveforms" @default.
- W2065227987 cites W1520858677 @default.
- W2065227987 cites W1549037739 @default.
- W2065227987 cites W1963949909 @default.
- W2065227987 cites W1977007208 @default.
- W2065227987 cites W1988936204 @default.
- W2065227987 cites W1992666142 @default.
- W2065227987 cites W2013365952 @default.
- W2065227987 cites W2024721493 @default.
- W2065227987 cites W2036024253 @default.
- W2065227987 cites W2040955709 @default.
- W2065227987 cites W2041838875 @default.
- W2065227987 cites W2057035244 @default.
- W2065227987 cites W2064279121 @default.
- W2065227987 cites W2075196717 @default.
- W2065227987 cites W2082792505 @default.
- W2065227987 cites W2094563278 @default.
- W2065227987 cites W2094679530 @default.
- W2065227987 cites W2099407551 @default.
- W2065227987 cites W2106231694 @default.
- W2065227987 cites W2107063471 @default.
- W2065227987 cites W2136128803 @default.
- W2065227987 cites W2137406421 @default.
- W2065227987 cites W2146034485 @default.
- W2065227987 cites W2157787958 @default.
- W2065227987 cites W2165652948 @default.
- W2065227987 cites W2172208801 @default.
- W2065227987 cites W2566492158 @default.
- W2065227987 cites W4206311976 @default.
- W2065227987 cites W4239719996 @default.
- W2065227987 doi "https://doi.org/10.1111/j.1365-246x.1993.tb02539.x" @default.
- W2065227987 hasPublicationYear "1993" @default.
- W2065227987 type Work @default.
- W2065227987 sameAs 2065227987 @default.
- W2065227987 citedByCount "47" @default.
- W2065227987 countsByYear W20652279872012 @default.
- W2065227987 countsByYear W20652279872013 @default.
- W2065227987 countsByYear W20652279872015 @default.
- W2065227987 countsByYear W20652279872017 @default.
- W2065227987 countsByYear W20652279872022 @default.
- W2065227987 countsByYear W20652279872023 @default.
- W2065227987 crossrefType "journal-article" @default.
- W2065227987 hasAuthorship W2065227987A5079413468 @default.
- W2065227987 hasAuthorship W2065227987A5086216061 @default.
- W2065227987 hasBestOaLocation W20652279871 @default.
- W2065227987 hasConcept C120665830 @default.
- W2065227987 hasConcept C121332964 @default.
- W2065227987 hasConcept C134306372 @default.
- W2065227987 hasConcept C138187205 @default.
- W2065227987 hasConcept C165699331 @default.
- W2065227987 hasConcept C195065555 @default.
- W2065227987 hasConcept C2524010 @default.
- W2065227987 hasConcept C2779567845 @default.
- W2065227987 hasConcept C33923547 @default.
- W2065227987 hasConcept C51544822 @default.
- W2065227987 hasConcept C74650414 @default.
- W2065227987 hasConcept C78045399 @default.
- W2065227987 hasConceptScore W2065227987C120665830 @default.
- W2065227987 hasConceptScore W2065227987C121332964 @default.
- W2065227987 hasConceptScore W2065227987C134306372 @default.
- W2065227987 hasConceptScore W2065227987C138187205 @default.
- W2065227987 hasConceptScore W2065227987C165699331 @default.
- W2065227987 hasConceptScore W2065227987C195065555 @default.
- W2065227987 hasConceptScore W2065227987C2524010 @default.
- W2065227987 hasConceptScore W2065227987C2779567845 @default.
- W2065227987 hasConceptScore W2065227987C33923547 @default.
- W2065227987 hasConceptScore W2065227987C51544822 @default.
- W2065227987 hasConceptScore W2065227987C74650414 @default.
- W2065227987 hasConceptScore W2065227987C78045399 @default.
- W2065227987 hasIssue "1" @default.
- W2065227987 hasLocation W20652279871 @default.
- W2065227987 hasOpenAccess W2065227987 @default.
- W2065227987 hasPrimaryLocation W20652279871 @default.
- W2065227987 hasRelatedWork W1544770479 @default.
- W2065227987 hasRelatedWork W2018002758 @default.
- W2065227987 hasRelatedWork W2043268301 @default.
- W2065227987 hasRelatedWork W2070325519 @default.
- W2065227987 hasRelatedWork W2079569646 @default.
- W2065227987 hasRelatedWork W2485914410 @default.
- W2065227987 hasRelatedWork W2604142676 @default.
- W2065227987 hasRelatedWork W2914370857 @default.
- W2065227987 hasRelatedWork W2968161779 @default.
- W2065227987 hasRelatedWork W3214410636 @default.
- W2065227987 hasVolume "113" @default.
- W2065227987 isParatext "false" @default.
- W2065227987 isRetracted "false" @default.
- W2065227987 magId "2065227987" @default.
- W2065227987 workType "article" @default.