Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065403043> ?p ?o ?g. }
- W2065403043 endingPage "107" @default.
- W2065403043 startingPage "100" @default.
- W2065403043 abstract "Abstract Nowadays DNA microarray technology is widely used in clinical researches for generating gene expression profiles from the biological samples. Based on the gene expression data, identifying differentially expressed genes (DEGs) from two groups of phenotypes or distinct biological conditions is one of the crucial steps in the procedure of discovering disease biomarkers. However, the clinical samples usually contain multiple cell types. This heterogeneous cell population significantly affects the gene expression patterns and will mask the biological difference between two groups of compared samples. Using mixed gene expression profile of multiple cell types instead of that of interested cell type for the identification of DEGs will seriously decrease the sensitivity of discovering the disease-related genes. Therefore, we proposed nonnegative matrix factorization (NMF), an unsupervised learning method that has been successfully applied in bioinformatics researches, for extracting the actual gene expression profile of interested cell type from the mixed profile of heterogeneous cell population. In our study, we firstly evaluated the performance of NMF algorithm in the deconvolution of gene expression data by using a well-controlled data set comprising the gene expression profiles from three tissues and eleven different mixtures with known proportions. Then, NMF was applied to the human whole-blood gene expression data generated from 24 kidney transplant recipients for estimating the pure gene expression profiles of five major blood cells, which were subsequently used to identify the genes related to the acute rejection of kidney transplant. The results showed that the number of DEGs (probe sets), which were identified from each of the gene expression profiles of five blood cells between stable post-transplant kidney transplant recipients and those experiencing acute transplant rejections, was greater than that from whole-blood samples. Finally, the DEGs were uploaded to the Gene Set Enrichment Analysis (GSEA) for the enrichment of signaling pathways and gene ontology terms. We found that several enriched pathways and gene ontology terms were significantly associated with renal transplantation rejection when the uploaded DEGs were identified from the two high content blood cells, while none of pathways and gene ontology terms was enriched when the uploaded DEGs were identified from whole-blood samples. Our results indicated that using the gene expression profile of specific cell type deconvoluted by NMF can efficiently increase the sensitivity of discovering potentially disease-related genes. In addition, this unsupervised method can evaluate the pure gene expression profile of specific cell type from the mixtures with no prior knowledge of cell proportions." @default.
- W2065403043 created "2016-06-24" @default.
- W2065403043 creator A5007166385 @default.
- W2065403043 creator A5008365894 @default.
- W2065403043 creator A5021274162 @default.
- W2065403043 creator A5045703368 @default.
- W2065403043 creator A5049396785 @default.
- W2065403043 creator A5050836872 @default.
- W2065403043 creator A5067583977 @default.
- W2065403043 creator A5085185712 @default.
- W2065403043 date "2013-07-01" @default.
- W2065403043 modified "2023-09-30" @default.
- W2065403043 title "Nonnegative matrix factorization for the improvement in sensitivity of discovering potentially disease-related genes" @default.
- W2065403043 cites W1486555851 @default.
- W2065403043 cites W1515882292 @default.
- W2065403043 cites W1556472699 @default.
- W2065403043 cites W1599494094 @default.
- W2065403043 cites W1902027874 @default.
- W2065403043 cites W1970156673 @default.
- W2065403043 cites W1975228698 @default.
- W2065403043 cites W1975777577 @default.
- W2065403043 cites W2011178667 @default.
- W2065403043 cites W2015737773 @default.
- W2065403043 cites W2017288758 @default.
- W2065403043 cites W2018843280 @default.
- W2065403043 cites W2033642329 @default.
- W2065403043 cites W2043399591 @default.
- W2065403043 cites W2044737323 @default.
- W2065403043 cites W2045168467 @default.
- W2065403043 cites W2050209553 @default.
- W2065403043 cites W2051872988 @default.
- W2065403043 cites W2055772444 @default.
- W2065403043 cites W2056265783 @default.
- W2065403043 cites W2059745395 @default.
- W2065403043 cites W2064560552 @default.
- W2065403043 cites W2081933678 @default.
- W2065403043 cites W2090247362 @default.
- W2065403043 cites W2092423825 @default.
- W2065403043 cites W2099874386 @default.
- W2065403043 cites W2103017472 @default.
- W2065403043 cites W2103114868 @default.
- W2065403043 cites W2106713259 @default.
- W2065403043 cites W2109363337 @default.
- W2065403043 cites W2114495858 @default.
- W2065403043 cites W2116642156 @default.
- W2065403043 cites W2123106337 @default.
- W2065403043 cites W2124704227 @default.
- W2065403043 cites W2127841452 @default.
- W2065403043 cites W2130410032 @default.
- W2065403043 cites W2132692097 @default.
- W2065403043 cites W2141188843 @default.
- W2065403043 cites W2147339185 @default.
- W2065403043 cites W2147730364 @default.
- W2065403043 cites W2150997370 @default.
- W2065403043 cites W2154899482 @default.
- W2065403043 cites W2154951934 @default.
- W2065403043 cites W2155388222 @default.
- W2065403043 cites W2159482845 @default.
- W2065403043 cites W2165674132 @default.
- W2065403043 cites W238668910 @default.
- W2065403043 cites W4247420482 @default.
- W2065403043 cites W4256409604 @default.
- W2065403043 doi "https://doi.org/10.1016/j.chemolab.2013.05.004" @default.
- W2065403043 hasPublicationYear "2013" @default.
- W2065403043 type Work @default.
- W2065403043 sameAs 2065403043 @default.
- W2065403043 citedByCount "5" @default.
- W2065403043 countsByYear W20654030432015 @default.
- W2065403043 countsByYear W20654030432016 @default.
- W2065403043 countsByYear W20654030432017 @default.
- W2065403043 countsByYear W20654030432023 @default.
- W2065403043 crossrefType "journal-article" @default.
- W2065403043 hasAuthorship W2065403043A5007166385 @default.
- W2065403043 hasAuthorship W2065403043A5008365894 @default.
- W2065403043 hasAuthorship W2065403043A5021274162 @default.
- W2065403043 hasAuthorship W2065403043A5045703368 @default.
- W2065403043 hasAuthorship W2065403043A5049396785 @default.
- W2065403043 hasAuthorship W2065403043A5050836872 @default.
- W2065403043 hasAuthorship W2065403043A5067583977 @default.
- W2065403043 hasAuthorship W2065403043A5085185712 @default.
- W2065403043 hasConcept C104317684 @default.
- W2065403043 hasConcept C106487976 @default.
- W2065403043 hasConcept C11413529 @default.
- W2065403043 hasConcept C121332964 @default.
- W2065403043 hasConcept C127413603 @default.
- W2065403043 hasConcept C139018669 @default.
- W2065403043 hasConcept C152671427 @default.
- W2065403043 hasConcept C158693339 @default.
- W2065403043 hasConcept C185592680 @default.
- W2065403043 hasConcept C187834632 @default.
- W2065403043 hasConcept C21200559 @default.
- W2065403043 hasConcept C24326235 @default.
- W2065403043 hasConcept C33923547 @default.
- W2065403043 hasConcept C41008148 @default.
- W2065403043 hasConcept C42355184 @default.
- W2065403043 hasConcept C43617362 @default.
- W2065403043 hasConcept C54355233 @default.
- W2065403043 hasConcept C54848796 @default.