Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065501042> ?p ?o ?g. }
- W2065501042 endingPage "6771" @default.
- W2065501042 startingPage "6764" @default.
- W2065501042 abstract "This paper is concerned with the peak wave number of very strong absorption bands in infrared spectra of molecular liquids. It is well known that the peak wave number can differ depending on how the spectrum is measured. It can be different, for example, in a transmission spectrum and in an attenuated total reflection spectrum. This difference can be removed by transforming both spectra to the real, n, and imaginary, k, refractive index spectra, because both spectra yield the same k spectrum. However, the n and k spectra can be transformed to spectra of any other intensity quantity, and the peak wave numbers of strong bands may differ by up to 6 cm−1 in the spectra of the different quantities. The question which then arises is “which infrared peak wave number is the correct one to use in the comparison of infrared wave numbers of molecular liquids with wave numbers in other spectra?” For example, infrared wave numbers in the gas and liquid phase are compared to observe differences between the two phases. Of equal importance, the wave numbers of peaks in infrared and Raman spectra of liquids are compared to determine whether the infrared-active and Raman-active vibrations coincide, and thus are likely to be the same, or are distinct. This question is explored in this paper by presenting the experimental facts for different intensity quantities. The intensity quantities described are macroscopic properties of the liquid, specifically the absorbance, attenuated total reflectance, imaginary refractive index, k, imaginary dielectric constant, ε″, and molar absorption coefficient, Em, and one microscopic property of a molecule in the liquid, specifically the imaginary molar polarizability, αm″, which is calculated under the approximation of the Lorentz local field. The main experimental observations are presented for the strongest band in the infrared spectrum of each of the liquids methanol, chlorobenzene, dichloromethane, and acetone. Particular care was paid to wave number calibration of both infrared and Raman spectra. Theoretical arguments indicate that the peak wave number in the αm″ spectrum is the correct one to use, because it is the only one that reflects the properties of molecules in their local environment in the liquid free from predictable long-range resonant dielectric effects. However, it is found that the comparison with Raman wave numbers is confused when the anisotropic local intermolecular forces and configuration in the liquid are significant. In these cases, the well known noncoincidence of the isotropic and anisotropic Raman scattering is observed, and the same factors lead to noncoincidence of the infrared and Raman bands." @default.
- W2065501042 created "2016-06-24" @default.
- W2065501042 creator A5017187499 @default.
- W2065501042 creator A5022676769 @default.
- W2065501042 date "1998-10-22" @default.
- W2065501042 modified "2023-10-03" @default.
- W2065501042 title "Comparison of infrared and Raman wave numbers of neat molecular liquids: Which is the correct infrared wave number to use?" @default.
- W2065501042 cites W1965105860 @default.
- W2065501042 cites W1967122466 @default.
- W2065501042 cites W1967290407 @default.
- W2065501042 cites W1970704289 @default.
- W2065501042 cites W1978801290 @default.
- W2065501042 cites W1980507065 @default.
- W2065501042 cites W1983995005 @default.
- W2065501042 cites W1986662310 @default.
- W2065501042 cites W1988462895 @default.
- W2065501042 cites W1990043707 @default.
- W2065501042 cites W1991247472 @default.
- W2065501042 cites W1994497015 @default.
- W2065501042 cites W2000681915 @default.
- W2065501042 cites W2003287280 @default.
- W2065501042 cites W2004472582 @default.
- W2065501042 cites W2006146695 @default.
- W2065501042 cites W2008475687 @default.
- W2065501042 cites W2011745776 @default.
- W2065501042 cites W2014281064 @default.
- W2065501042 cites W2024104541 @default.
- W2065501042 cites W2024849145 @default.
- W2065501042 cites W2040660112 @default.
- W2065501042 cites W2041399900 @default.
- W2065501042 cites W2044050261 @default.
- W2065501042 cites W2044750618 @default.
- W2065501042 cites W2048154041 @default.
- W2065501042 cites W2058018888 @default.
- W2065501042 cites W2065419394 @default.
- W2065501042 cites W2070150234 @default.
- W2065501042 cites W2071820004 @default.
- W2065501042 cites W2077377148 @default.
- W2065501042 cites W2086892871 @default.
- W2065501042 cites W2524921683 @default.
- W2065501042 cites W4233137465 @default.
- W2065501042 cites W4245031735 @default.
- W2065501042 doi "https://doi.org/10.1063/1.477322" @default.
- W2065501042 hasPublicationYear "1998" @default.
- W2065501042 type Work @default.
- W2065501042 sameAs 2065501042 @default.
- W2065501042 citedByCount "42" @default.
- W2065501042 countsByYear W20655010422013 @default.
- W2065501042 countsByYear W20655010422014 @default.
- W2065501042 countsByYear W20655010422015 @default.
- W2065501042 countsByYear W20655010422016 @default.
- W2065501042 countsByYear W20655010422017 @default.
- W2065501042 countsByYear W20655010422019 @default.
- W2065501042 countsByYear W20655010422021 @default.
- W2065501042 countsByYear W20655010422022 @default.
- W2065501042 crossrefType "journal-article" @default.
- W2065501042 hasAuthorship W2065501042A5017187499 @default.
- W2065501042 hasAuthorship W2065501042A5022676769 @default.
- W2065501042 hasConcept C113196181 @default.
- W2065501042 hasConcept C120665830 @default.
- W2065501042 hasConcept C121130766 @default.
- W2065501042 hasConcept C121332964 @default.
- W2065501042 hasConcept C125287762 @default.
- W2065501042 hasConcept C1276947 @default.
- W2065501042 hasConcept C153642686 @default.
- W2065501042 hasConcept C158355884 @default.
- W2065501042 hasConcept C178790620 @default.
- W2065501042 hasConcept C185592680 @default.
- W2065501042 hasConcept C40003534 @default.
- W2065501042 hasConcept C41999313 @default.
- W2065501042 hasConcept C42067758 @default.
- W2065501042 hasConcept C4839761 @default.
- W2065501042 hasConcept C49102809 @default.
- W2065501042 hasConcept C93038891 @default.
- W2065501042 hasConceptScore W2065501042C113196181 @default.
- W2065501042 hasConceptScore W2065501042C120665830 @default.
- W2065501042 hasConceptScore W2065501042C121130766 @default.
- W2065501042 hasConceptScore W2065501042C121332964 @default.
- W2065501042 hasConceptScore W2065501042C125287762 @default.
- W2065501042 hasConceptScore W2065501042C1276947 @default.
- W2065501042 hasConceptScore W2065501042C153642686 @default.
- W2065501042 hasConceptScore W2065501042C158355884 @default.
- W2065501042 hasConceptScore W2065501042C178790620 @default.
- W2065501042 hasConceptScore W2065501042C185592680 @default.
- W2065501042 hasConceptScore W2065501042C40003534 @default.
- W2065501042 hasConceptScore W2065501042C41999313 @default.
- W2065501042 hasConceptScore W2065501042C42067758 @default.
- W2065501042 hasConceptScore W2065501042C4839761 @default.
- W2065501042 hasConceptScore W2065501042C49102809 @default.
- W2065501042 hasConceptScore W2065501042C93038891 @default.
- W2065501042 hasIssue "16" @default.
- W2065501042 hasLocation W20655010421 @default.
- W2065501042 hasOpenAccess W2065501042 @default.
- W2065501042 hasPrimaryLocation W20655010421 @default.
- W2065501042 hasRelatedWork W1973087998 @default.
- W2065501042 hasRelatedWork W1973970616 @default.
- W2065501042 hasRelatedWork W1979779064 @default.
- W2065501042 hasRelatedWork W2004145606 @default.