Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065531040> ?p ?o ?g. }
- W2065531040 endingPage "377" @default.
- W2065531040 startingPage "368" @default.
- W2065531040 abstract "Population pharmacokinetic and dynamic modeling is often employed to analyze data of steady-state trough serum digoxin concentrations in the course of what is frequently regarded as routine therapeutic drug monitoring (TDM). Such a monitoring protocol is extremely uninformative. It permits only the estimation of a single parameter of a 1-compartment model, such as clearance. The use of D-optimal design strategies permits much more information to be obtained, employing models having a really meaningful structure. Strategies and protocols for routine TDM policies greatly need to be improved, incorporating these principles of optimal design. Software for population pharmacokinetic modeling has been dominated by NONMEM. However, because NONMEM is a parametric method, it must assume a shape for the model parameter distributions. If the assumption is not correct, the model will be in error, and the most likely results given the raw data will not be obtained. In addition, the likelihood as computed by NONMEM is only approximate, not exact. This impairs statistical consistency and reduces statistical efficiency and the resulting precision of model parameter estimates. Other parametric methods are superior, as they provide exact likelihoods. However, they still suffer from the constraints of assuming the shape of the model parameter distributions. Nonparametric methods are more flexible. One need not make any assumptions about the shape of the parameter distributions. Nonparametric methods also provide exact likelihoods and are statistically consistent, efficient, and precise. They also permit maximally precise dosage regimens to be developed for patients using multiple model dosage design, something parametric modeling methods cannot do. Laboratory assay errors are better described by the reciprocal of the assay variance of each measurement rather than by coefficient of variation. This is easy to do and permits more precise models to be made. This also permits estimation of assay error separately from the other sources of uncertainty in the clinical environment. This is most useful scientifically. Digoxin has at least 2-compartment behavior. Its pharmacologic and clinical effects correlate not with serum digoxin concentrations but with those in the peripheral nonserum compartment. Some illustrative clinical examples are discussed. It seems that digitalis therapy, guided by TDM and our 2 compartment models based on that of Reuning et al, can convert at least some patients with atrial fibrillation and flutter to regular sinus rhythm. Investigators have often used steady-state trough concentrations only to make a 1-compartment model and have sought only to predict future steady-state trough concentrations. Much more than this can be done, and clinical care can be much improved. Further work along these lines is greatly to be desired." @default.
- W2065531040 created "2016-06-24" @default.
- W2065531040 creator A5068354167 @default.
- W2065531040 date "2012-08-01" @default.
- W2065531040 modified "2023-10-16" @default.
- W2065531040 title "Some Comments and Suggestions Concerning Population Pharmacokinetic Modeling, Especially of Digoxin, and Its Relation to Clinical Therapy" @default.
- W2065531040 cites W1607337468 @default.
- W2065531040 cites W1966483053 @default.
- W2065531040 cites W1966713274 @default.
- W2065531040 cites W1989074423 @default.
- W2065531040 cites W1996685355 @default.
- W2065531040 cites W1998198153 @default.
- W2065531040 cites W2018373969 @default.
- W2065531040 cites W2019986800 @default.
- W2065531040 cites W2023079478 @default.
- W2065531040 cites W2049040735 @default.
- W2065531040 cites W2051173026 @default.
- W2065531040 cites W2052755535 @default.
- W2065531040 cites W2063773106 @default.
- W2065531040 cites W2079360233 @default.
- W2065531040 cites W2084375881 @default.
- W2065531040 cites W2088883133 @default.
- W2065531040 cites W2102904779 @default.
- W2065531040 cites W2168289672 @default.
- W2065531040 cites W2317464648 @default.
- W2065531040 cites W4240380219 @default.
- W2065531040 cites W4247798650 @default.
- W2065531040 cites W4321429438 @default.
- W2065531040 cites W4376453586 @default.
- W2065531040 doi "https://doi.org/10.1097/ftd.0b013e31825c88bb" @default.
- W2065531040 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3837704" @default.
- W2065531040 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22735674" @default.
- W2065531040 hasPublicationYear "2012" @default.
- W2065531040 type Work @default.
- W2065531040 sameAs 2065531040 @default.
- W2065531040 citedByCount "22" @default.
- W2065531040 countsByYear W20655310402012 @default.
- W2065531040 countsByYear W20655310402013 @default.
- W2065531040 countsByYear W20655310402014 @default.
- W2065531040 countsByYear W20655310402016 @default.
- W2065531040 countsByYear W20655310402017 @default.
- W2065531040 countsByYear W20655310402018 @default.
- W2065531040 countsByYear W20655310402019 @default.
- W2065531040 countsByYear W20655310402020 @default.
- W2065531040 countsByYear W20655310402021 @default.
- W2065531040 countsByYear W20655310402022 @default.
- W2065531040 countsByYear W20655310402023 @default.
- W2065531040 crossrefType "journal-article" @default.
- W2065531040 hasAuthorship W2065531040A5068354167 @default.
- W2065531040 hasBestOaLocation W20655310402 @default.
- W2065531040 hasConcept C102366305 @default.
- W2065531040 hasConcept C105795698 @default.
- W2065531040 hasConcept C11413529 @default.
- W2065531040 hasConcept C117251300 @default.
- W2065531040 hasConcept C126255220 @default.
- W2065531040 hasConcept C154945302 @default.
- W2065531040 hasConcept C167928553 @default.
- W2065531040 hasConcept C24574437 @default.
- W2065531040 hasConcept C2776239304 @default.
- W2065531040 hasConcept C2776436953 @default.
- W2065531040 hasConcept C28826006 @default.
- W2065531040 hasConcept C2908647359 @default.
- W2065531040 hasConcept C33923547 @default.
- W2065531040 hasConcept C41008148 @default.
- W2065531040 hasConcept C71924100 @default.
- W2065531040 hasConcept C99454951 @default.
- W2065531040 hasConceptScore W2065531040C102366305 @default.
- W2065531040 hasConceptScore W2065531040C105795698 @default.
- W2065531040 hasConceptScore W2065531040C11413529 @default.
- W2065531040 hasConceptScore W2065531040C117251300 @default.
- W2065531040 hasConceptScore W2065531040C126255220 @default.
- W2065531040 hasConceptScore W2065531040C154945302 @default.
- W2065531040 hasConceptScore W2065531040C167928553 @default.
- W2065531040 hasConceptScore W2065531040C24574437 @default.
- W2065531040 hasConceptScore W2065531040C2776239304 @default.
- W2065531040 hasConceptScore W2065531040C2776436953 @default.
- W2065531040 hasConceptScore W2065531040C28826006 @default.
- W2065531040 hasConceptScore W2065531040C2908647359 @default.
- W2065531040 hasConceptScore W2065531040C33923547 @default.
- W2065531040 hasConceptScore W2065531040C41008148 @default.
- W2065531040 hasConceptScore W2065531040C71924100 @default.
- W2065531040 hasConceptScore W2065531040C99454951 @default.
- W2065531040 hasIssue "4" @default.
- W2065531040 hasLocation W20655310401 @default.
- W2065531040 hasLocation W20655310402 @default.
- W2065531040 hasLocation W20655310403 @default.
- W2065531040 hasLocation W20655310404 @default.
- W2065531040 hasOpenAccess W2065531040 @default.
- W2065531040 hasPrimaryLocation W20655310401 @default.
- W2065531040 hasRelatedWork W1485223389 @default.
- W2065531040 hasRelatedWork W1967007777 @default.
- W2065531040 hasRelatedWork W1981436518 @default.
- W2065531040 hasRelatedWork W2013882407 @default.
- W2065531040 hasRelatedWork W2036729496 @default.
- W2065531040 hasRelatedWork W2040597492 @default.
- W2065531040 hasRelatedWork W2057690389 @default.
- W2065531040 hasRelatedWork W2161099019 @default.
- W2065531040 hasRelatedWork W2593688499 @default.