Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065568194> ?p ?o ?g. }
- W2065568194 endingPage "27208" @default.
- W2065568194 startingPage "27205" @default.
- W2065568194 abstract "The mitogen-activated protein (MAP) kinase family includes extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38/RK/CSBP (p38) as structurally and functionally distinct enzyme classes. Here we describe two new dual specificity phosphatases of the CL100/MKP-1 family that are selective for inactivating ERK or JNK/SAPK and p38 MAP kinases when expressed in COS-7 cells. M3/6 is the first phosphatase of this family to display highly specific inactivation of JNK/SAPK and p38 MAP kinases. Although stress-induced activation of p54 SAPKβ, p46 SAPKγ (JNK1) or p38 MAP kinases is abolished upon co-transfection with increasing amounts of M3/6 plasmid, epidermal growth factor-stimulated ERK1 is remarkably insensitive even to the highest levels of M3/6 expression obtained. In contrast to M3/6, the dual specificity phosphatase MKP-3 is selective for inactivation of ERK family MAP kinases. Low level expression of MKP-3 blocks totally epidermal growth factor-stimulated ERK1, whereas stress-induced activation of p54 SAPKβ and p38 MAP kinases is inhibited only partially under identical conditions. Selective regulation by M3/6 and MKP-3 was also observed upon chronic MAP kinase activation by constitutive p21ras GTPases. Hence, although M3/6 expression effectively blocked p54 SAPKβ activation by p21rac (G12V), ERK1 activated by p21ras (G12V) was insensitive to this phosphatase. ERK1 activation by oncogenic p21ras was, however, blocked totally by co-expression of MKP-3. This is the first report demonstrating reciprocally selective inhibition of different MAP kinases by two distinct dual specificity phosphatases. The mitogen-activated protein (MAP) kinase family includes extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38/RK/CSBP (p38) as structurally and functionally distinct enzyme classes. Here we describe two new dual specificity phosphatases of the CL100/MKP-1 family that are selective for inactivating ERK or JNK/SAPK and p38 MAP kinases when expressed in COS-7 cells. M3/6 is the first phosphatase of this family to display highly specific inactivation of JNK/SAPK and p38 MAP kinases. Although stress-induced activation of p54 SAPKβ, p46 SAPKγ (JNK1) or p38 MAP kinases is abolished upon co-transfection with increasing amounts of M3/6 plasmid, epidermal growth factor-stimulated ERK1 is remarkably insensitive even to the highest levels of M3/6 expression obtained. In contrast to M3/6, the dual specificity phosphatase MKP-3 is selective for inactivation of ERK family MAP kinases. Low level expression of MKP-3 blocks totally epidermal growth factor-stimulated ERK1, whereas stress-induced activation of p54 SAPKβ and p38 MAP kinases is inhibited only partially under identical conditions. Selective regulation by M3/6 and MKP-3 was also observed upon chronic MAP kinase activation by constitutive p21ras GTPases. Hence, although M3/6 expression effectively blocked p54 SAPKβ activation by p21rac (G12V), ERK1 activated by p21ras (G12V) was insensitive to this phosphatase. ERK1 activation by oncogenic p21ras was, however, blocked totally by co-expression of MKP-3. This is the first report demonstrating reciprocally selective inhibition of different MAP kinases by two distinct dual specificity phosphatases. INTRODUCTIONThe mitogen activated protein (MAP) kinase 1The abbreviations used are: MAP kinasemitogen-activated protein kinaseERKextracellular signal-regulated kinaseJNK/SAPKc-Jun NH2-terminal kinase/stress-activated protein kinaseHAhemagglutininEGFepidermal growth factor. family comprises the extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK), and p38/RK/CSBP (p38) as three structurally and functionally distinct enzyme classes (1Boulton T.G. Nye S.H. Robbins D.J. Ip N.Y. Radziejewska E. Morgenbesser S.D. DePinho R.A. Panayotatos N. Cobb M.H. Yancopoulos G.D. Cell. 1991; 65: 663-675Abstract Full Text PDF PubMed Scopus (1477) Google Scholar, 2Meloche S. Pages G. Pouyssegur J. Mol. Biol. Cell. 1992; 3: 63-71Crossref PubMed Scopus (130) Google Scholar, 3Derijard B. Hibi M. Wu I.-H. Barrett T. Su B. Deng T. Karin M. Davis R.J. Cell. 1994; 76: 1025-1037Abstract Full Text PDF PubMed Scopus (2949) Google Scholar, 4Han J. Lee J.-D. Bibbs L. Ulevitch R.J. Science. 1994; 265: 808-811Crossref PubMed Scopus (2402) Google Scholar, 5Kyriakis J.M. Banerjee P. Nikolakaki E. Dai T. Rubie E.R. Ahmad M.F. Avruch J. Woodgett J.R. Nature. 1994; 369: 156-160Crossref PubMed Scopus (2408) Google Scholar, 6Lee J.C. Laydon J.T. McDonnell P.C. Gallagher T.F. Kumar S. Green D. McNulty D. Blumenthal M.J. Heys J.R. Landvatter S.W. Strickler J.E. McLaughlin M.M. Siemens I.R. Fisher S.M. Livi G.P. White J.R. Adams J.L. Young P.R. Nature. 1994; 372: 739-746Crossref PubMed Scopus (3121) Google Scholar, 7Rouse J. Cohen P. Trigon S. Morange M. Alonzo-Llamazares A. Zamanillo D. Hunt T. Nebreda A.R. Cell. 1994; 78: 1027-1037Abstract Full Text PDF PubMed Scopus (1494) Google Scholar). ERK family members are activated by a variety of growth and differentiation factors, while MAP kinases of the JNK/SAPK, and p38 class are activated preferentially by cellular stresses, and inflammatory cytokines (1Boulton T.G. Nye S.H. Robbins D.J. Ip N.Y. Radziejewska E. Morgenbesser S.D. DePinho R.A. Panayotatos N. Cobb M.H. Yancopoulos G.D. Cell. 1991; 65: 663-675Abstract Full Text PDF PubMed Scopus (1477) Google Scholar, 2Meloche S. Pages G. Pouyssegur J. Mol. Biol. Cell. 1992; 3: 63-71Crossref PubMed Scopus (130) Google Scholar, 3Derijard B. Hibi M. Wu I.-H. Barrett T. Su B. Deng T. Karin M. Davis R.J. Cell. 1994; 76: 1025-1037Abstract Full Text PDF PubMed Scopus (2949) Google Scholar, 4Han J. Lee J.-D. Bibbs L. Ulevitch R.J. Science. 1994; 265: 808-811Crossref PubMed Scopus (2402) Google Scholar, 5Kyriakis J.M. Banerjee P. Nikolakaki E. Dai T. Rubie E.R. Ahmad M.F. Avruch J. Woodgett J.R. Nature. 1994; 369: 156-160Crossref PubMed Scopus (2408) Google Scholar, 7Rouse J. Cohen P. Trigon S. Morange M. Alonzo-Llamazares A. Zamanillo D. Hunt T. Nebreda A.R. Cell. 1994; 78: 1027-1037Abstract Full Text PDF PubMed Scopus (1494) Google Scholar, 8Leevers S.J. Marshall C.J. EMBO J. 1992; 11: 569-574Crossref PubMed Scopus (382) Google Scholar, 9Crespo P. Xu N. Simonds W.F. Gutkind J.S. Nature. 1994; 369: 418-420Crossref PubMed Scopus (758) Google Scholar, 10Coso O.A. Chiariello M. Yu J.-C. Teramoto H. Crespo P. Xu N. Miki T. Gutkind J.S. Cell. 1995; 81: 1137-1146Abstract Full Text PDF PubMed Scopus (1559) Google Scholar, 11Minden A. Lin A. Claret F.-X. Abo A. Karin M. Cell. 1995; 81: 1147-1157Abstract Full Text PDF PubMed Scopus (1444) Google Scholar, 12Beyaert R. Cuenda A. Vanden Berghe W. Plaisance S. Lee J.C. Haegeman G. Cohen P. Fiers W. EMBO J. 1996; 15: 1914-1923Crossref PubMed Scopus (599) Google Scholar). Activated MAP kinases phosphorylate a range of cellular substrates, including additional kinases and several transcription factors (7Rouse J. Cohen P. Trigon S. Morange M. Alonzo-Llamazares A. Zamanillo D. Hunt T. Nebreda A.R. Cell. 1994; 78: 1027-1037Abstract Full Text PDF PubMed Scopus (1494) Google Scholar, 13Beretta L. Bubois M.-F. Sobel A. Bensaude O. Eur. J. Biochem. 1995; 227: 388-395Crossref PubMed Scopus (53) Google Scholar, 14Cano E. Mahadevan L.C. Trends Biochem. Sci. 1995; 29: 117-122Abstract Full Text PDF Scopus (996) Google Scholar, 15Treisman R. Curr. Opin. Cell Biol. 1996; 8: 205-215Crossref PubMed Scopus (1160) Google Scholar, 16Cahill M.A. Janknecht R. Nordheim A. Curr. Biol. 1996; 6: 16-19Abstract Full Text Full Text PDF PubMed Scopus (171) Google Scholar). MAP kinase-dependent regulation of diverse targets indicates a critical role orchestrating many varied and important cellular processes. Likely functions include a pivotal role for ERK in mediating neuronal differentiation in PC12 cells as well as growth factor-stimulated proliferation and oncogenic transformation in fibroblasts (17Pages G. Lenormand P. L'Allemain G. Chambard J.C. Meloche S. Pouyssegur J. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 8319-8328Crossref PubMed Scopus (923) Google Scholar, 18Sontag E. Fedorov S. Kamibayashi C. Robbins D. Cobb M. Mumby M. Cell. 1993; 75: 887-897Abstract Full Text PDF PubMed Scopus (459) Google Scholar, 19Cowley S. Paterson H. Kemp P. Marshall C.J. Cell. 1994; 77: 841-852Abstract Full Text PDF PubMed Scopus (1845) Google Scholar, 20Mansour S.J. Matten W.T. Hermann A.S. Candia J.M. Rong S. Fukasawa K. Vande Woude G.F. Ahn N.G. Science. 1994; 265: 966-970Crossref PubMed Scopus (1254) Google Scholar, 21Dudley D.T. Pang L. Decker S.J. Bridges A.J. Saltiel A.R. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 7686-7689Crossref PubMed Scopus (2584) Google Scholar). Recent investigations also support the view that activation of JNK/SAPK and p38 MAP kinases are critical in processes mediating platelet aggregation and secretion, in generation of inflammatory cytokines as well as in triggering of apoptotic death in a range of cell types (6Lee J.C. Laydon J.T. McDonnell P.C. Gallagher T.F. Kumar S. Green D. McNulty D. Blumenthal M.J. Heys J.R. Landvatter S.W. Strickler J.E. McLaughlin M.M. Siemens I.R. Fisher S.M. Livi G.P. White J.R. Adams J.L. Young P.R. Nature. 1994; 372: 739-746Crossref PubMed Scopus (3121) Google Scholar, 12Beyaert R. Cuenda A. Vanden Berghe W. Plaisance S. Lee J.C. Haegeman G. Cohen P. Fiers W. EMBO J. 1996; 15: 1914-1923Crossref PubMed Scopus (599) Google Scholar, 22Saklatvala J. Rawlinson L. Waller R.J. Sarsfield S. Lee J.C. Morton L.F. Barnes M.J. Farndale R.W. J. Biol. Chem. 1996; 271: 6586-6589Abstract Full Text Full Text PDF PubMed Scopus (258) Google Scholar, 23Verhelj M. Bose R. Lin X.H. Yao B. Jarvis W.D. Grant S. Birrer M.J. Szabo E. Zon L.I. Kyriakis J.M. Haimovitz-Friedman A. Fuks Z. Kolesnick R.N. Nature. 1996; 380: 75-79Crossref PubMed Scopus (1710) Google Scholar, 24Xia A. Dickens M. Raingeaud J. Davis R.J. Greenberg M.E. Science. 1996; 270: 1326-1331Crossref Scopus (5027) Google Scholar, 25Zanke B.W. Boudreau K. Rubie E. Winnett E. Tibbles L.A. Zon L. Kyriakis J. Liu F.-F. Woodgett J.R. Curr. Biol. 1996; 6: 606-613Abstract Full Text Full Text PDF PubMed Scopus (437) Google Scholar).Full activation of MAP kinases requires dual phosphorylation on threonine and tyrosine residues within kinase domain VIII. Although several upstream kinases acting selectively on ERK, JNK/SAPK, or p38 family members have now been identified (14Cano E. Mahadevan L.C. Trends Biochem. Sci. 1995; 29: 117-122Abstract Full Text PDF Scopus (996) Google Scholar, 16Cahill M.A. Janknecht R. Nordheim A. Curr. Biol. 1996; 6: 16-19Abstract Full Text Full Text PDF PubMed Scopus (171) Google Scholar, 26Marshall C.J. Cell. 1995; 80: 179-185Abstract Full Text PDF PubMed Scopus (4222) Google Scholar), dephosphorylation by specific phosphatases may also play a critical role. An emerging class of dual specificity phosphatases inactivate MAP kinases through dephosphorylating both threonine and tyrosine residues critical for enzymatic activation (27Keyse S.M. Biochem. Biophys. Acta. 1995; 1265: 152-160Crossref PubMed Scopus (233) Google Scholar). To date, 10 distinct dual specificity phosphatase gene family members have been identified. These include CL100/MKP-1 (identical to 3CH134) (28Keyse S.M. Emslie E.A. Nature. 1992; 359: 644-646Crossref PubMed Scopus (568) Google Scholar, 29Charles C.H. Abler A.S. Lau L.F. Oncogene. 1992; 7: 187-190PubMed Google Scholar, 30Alessi D.R. Smythe C. Keyse S.M. Oncogene. 1993; 8: 2015-2020PubMed Google Scholar, 31Sun H. Charles C.H. Lau L.F. Tonks N.K. Cell. 1993; 75: 487-493Abstract Full Text PDF PubMed Scopus (1022) Google Scholar), VHR (32Ishibashi T. Bottaro D.P. Chan A. Miki T. Aaronson S.A. Proc. Natl. Acad. Sci. U. S. A. 1993; 89: 12170-12174Crossref Scopus (180) Google Scholar), PAC1 (33Rohan P.J. Davis P. Moskaluk C.A. Kearns M. Krutzsch H. Siebenlist U. Kelly K. Science. 1993; 259: 1763-1766Crossref PubMed Scopus (263) Google Scholar, 34Ward Y. Gupta S. Jensen P. Wartmann M. Davis R.J. Kelly K. Nature. 1994; 367: 651-654Crossref PubMed Scopus (295) Google Scholar), hVH-2 (also cloned as MKP-2 and TYP-1) (35Guan K.-L. Butch E. J. Biol. Chem. 1995; 270: 7197-7203Abstract Full Text Full Text PDF PubMed Scopus (169) Google Scholar, 36Misra-Press A. Rim C.S. Yao H. Roberson M.S. Stork P.J.S. J. Biol. Chem. 1995; 270: 14587-14596Abstract Full Text Full Text PDF PubMed Scopus (219) Google Scholar, 37King A.G. Ozanne B.W. Smythe C. Ashworth A. Oncogene. 1995; 11: 2553-2563PubMed Google Scholar), hVH-3 (also known as B23) (38Kwak S.P Dixon J.E. J. Biol. Chem. 1995; 270: 1156-1160Abstract Full Text Full Text PDF PubMed Scopus (114) Google Scholar, 39Ishibashi T. Bottaro D.P. Michieli P. Kelley C.A. Aaronson S.A. J. Biol. Chem. 1994; 269: 29897-29902Abstract Full Text PDF PubMed Google Scholar), MKP-3 (identical to rVH-6 and orthologue of PYST1) (40Muda M. Boschert U. Dickinson R. Martinou J.-C. Martinou I. Camps M. Schlegel W. Arkinstall S. J. Biol. Chem. 1996; 271: 4319-4326Abstract Full Text Full Text PDF PubMed Scopus (320) Google Scholar, 41Mourey R.J. Quinn C.V. Campbell J.S. Wenderoth M.P. Hauschka S.D. Krebs E.G. Dixon J.E. J. Biol. Chem. 1996; 271: 3795-3802Abstract Full Text Full Text PDF PubMed Scopus (114) Google Scholar, 42Groom L.A. Sneddon A.A. Alessi D.R. Dowd S. Keyse S.M. EMBO J. 1996; 15: 3621-3632Crossref PubMed Scopus (370) Google Scholar), MKP-X (orthologue of PYST2) (40Muda M. Boschert U. Dickinson R. Martinou J.-C. Martinou I. Camps M. Schlegel W. Arkinstall S. J. Biol. Chem. 1996; 271: 4319-4326Abstract Full Text Full Text PDF PubMed Scopus (320) Google Scholar, 42Groom L.A. Sneddon A.A. Alessi D.R. Dowd S. Keyse S.M. EMBO J. 1996; 15: 3621-3632Crossref PubMed Scopus (370) Google Scholar), MKP-4, 2M. Muda, submitted for publication. hVH-5 (43Martell K.J. Seasholtz A.F. Kwak S.P. Clemens K.K. Dickson J.E. J. Neurochem. 1995; 65: 1823-1833Crossref PubMed Scopus (92) Google Scholar), and M3/6 (44Theodosiou A.M. Rodrigues N.R. Nesbit M.A. Ambrose H.J. Paterson H. McLellan-Arnold E. Boyd Y. Leversha M.A. Owen N. Blake D.J. Ashworth A. Davies K.E. Hum. Mol. Genet. 1996; 96: 675-684Crossref Scopus (49) Google Scholar). These phosphatases all posses a characteristic extended active site motif VXVHCXXGXSRSXTXXXAY(L/I)M (where X is any amino acid) and NH2-terminal CH2 domains possessing homology to the cell cycle regulator Cdc25 phosphatase (45Keyse S.M. Trends Biochem. Sci. 1993; 18: 377-378Abstract Full Text PDF PubMed Scopus (89) Google Scholar). As part of an investigation into the biological function of dual specificity phosphatases, we have observed highly specific regulation of MAP kinases by two recently cloned family members, M3/6 and MKP-3 (40Muda M. Boschert U. Dickinson R. Martinou J.-C. Martinou I. Camps M. Schlegel W. Arkinstall S. J. Biol. Chem. 1996; 271: 4319-4326Abstract Full Text Full Text PDF PubMed Scopus (320) Google Scholar, 44Theodosiou A.M. Rodrigues N.R. Nesbit M.A. Ambrose H.J. Paterson H. McLellan-Arnold E. Boyd Y. Leversha M.A. Owen N. Blake D.J. Ashworth A. Davies K.E. Hum. Mol. Genet. 1996; 96: 675-684Crossref Scopus (49) Google Scholar), and we describe these observations in this report.RESULTS AND DISCUSSIONTo establish a system to allow assessment of MAP kinase regulation by M3/6 and MKP-3, HA-tagged ERK1, p54 SAPKβ, and p38 MAP kinase were expressed in COS-7 cells and activated by exposure to a number of acute stimuli. Although ERK1 is stimulated by EGF, H2O2, and menadione (vitamin K), p54 SAPKβ and p38 are activated following cellular exposure to anisomycin, sodium arsenite, H2O2, UV light, and sorbitol. p38 MAP kinase but not p54 SAPKβ also undergoes activation by menadione (Fig. 1). EGF (ERK1), UV (p54 SAPKβ), and H202 (p38) were selected as stimuli to test inhibitory regulation by dual specificity phosphatases.M3/6 has been expressed previously in COS cells and shown to be ineffective as an inhibitor of serum-stimulated ERK2 phosphorylation (44Theodosiou A.M. Rodrigues N.R. Nesbit M.A. Ambrose H.J. Paterson H. McLellan-Arnold E. Boyd Y. Leversha M.A. Owen N. Blake D.J. Ashworth A. Davies K.E. Hum. Mol. Genet. 1996; 96: 675-684Crossref Scopus (49) Google Scholar). In accordance with these observations, although increasing the concentration of Myc-M3/6 plasmid in transfections from 0.1 to 2.0 µg resulted in a dose-dependent increase in immunodetectable Myc-tagged protein (not shown), EGF-dependent enzymatic activation of ERK1 was inhibited less than 30% even at the maximum levels of M3/6 obtained (Fig. 2). Interestingly, however, parallel experiments demonstrated clearly that M3/6 blocks stress-induced activation of both p54 SAPKβ and p38 MAP kinases with maximal inhibition observed when cells were transfected using only 0.5-1.0 µg of plasmid (Fig. 2). Identical inhibition by M3/6 was observed when p54 SAPKβ and p38 MAP kinases were activated by UV, anisomycin, or H2O2. Also, p46 HA-SAPKγ (JNK1) activated by anisomycin is inhibited identically over the range of M3/6 expression levels obtained in COS-7 cells (not shown). Together, these observations demonstrate that M3/6 displays highly selective inactivation of JNK/SAPK and p38 MAP kinases when expressed in mammalian cells.Fig. 2Selective inhibition of SAPKβ and p38 MAP kinases by M3/6. COS-7 cells were co-transfected with either HA-ERK1, HA-SAPKβ, or HA-p38 MAP kinase (1.0 µg of plasmid) together with 0.1, 0.25, 0.5, 1.0, or 2.0 µg of Myc-M3/6 plasmid as indicated. Plasmid concentrations were maintained constant using PMT-SM vector. After 40 h of growth and 2 h of serum starvation, cells were stimulated using 10 nM EGF (ERK1), 100 J/M2 UV light (SAPKβ), or 0.5 mM H2O2 (p38) followed by immunoprecipation of the tagged MAP kinase and immune complex assay using myelin basic protein (ERK1), GST-c-Jun (SAPKβ), or GST-ATF-2 (p38) as substrate. A, autoradiograph of phosphorylated substrates separated using a 15% SDS-polyacrylamide gel. Substrate bands were excised for counting by scintillation spectrometry, and the data were used to calculate kinase activity. This is indicated numerically below each lane expressed as fold stimulation over basal activity (defined as 1.0) measured in unstimulated cells. The data are representative of at least four separate experiments. B, Western blot of HA-ERK1, HA-SAPKβ, and HA-p38 MAP kinases used for immune complex assays shown in A. Kinases were detected as described in the legend to Fig. 1. The data are representative of at least four separate experiments.View Large Image Figure ViewerDownload Hi-res image Download (PPT)We have reported previously that MKP-3 expressed in COS-7 cells blocks totally both endogenous and heterologously expressed ERK2 activation following stimulation with growth factors (40Muda M. Boschert U. Dickinson R. Martinou J.-C. Martinou I. Camps M. Schlegel W. Arkinstall S. J. Biol. Chem. 1996; 271: 4319-4326Abstract Full Text Full Text PDF PubMed Scopus (320) Google Scholar). In a more detailed analysis we have now co-transfected ERK1 with a range of Myc-MKP-3 plasmid levels (0.1-2.0 µg), which results in a dose-dependent increase in immunodetectable protein (not shown). This approach demonstrates that MKP-3 also blocks EGF-stimulated ERK1 activation and that this inhibition is maximal when cells are transfected with 0.5-1.0 µg of MKP-3 plasmid (Fig. 3). Basal ERK1 activity is also abolished when cells are transfected with 1.0 µg or more of MKP-3 plasmid (Fig. 3). In contrast to observations with ERK1 and ERK2, stress-activated p54 SAPKβ or p38 MAP kinases were suppressed only partially using 0.5-1.0 µg of plasmid with near complete blockade observed only when cells were co-transfected with 2.0 µg of MKP-3 plasmid (Fig. 3). These observations demonstrate that MKP-3 appears highly selective for inactivation of the ERK family of MAP kinases.Fig. 3Selective inhibition of ERK1 activation by MKP-3. COS-7 cells were co-transfected with HA-ERK1, HA-SAPKβ, or HA-p38 MAP kinases (1.0 µg of plasmid) together with 0.1, 0.25, 0.5, 1.0, or 2.0 µg of Myc-MKP-3 plasmid as indicated with empty PMT-SM used to control total plasmid levels. Following 40 h of growth and 2 h of serum starvation, cells were stimulated with 10 nM EGF (ERK1), 100 J/M2 UV light (SAPKβ), or 0.5 mM H2O2 (p38) followed by immunoprecipitation and immuno complex assays using myelin basic protein (ERK1), GST-c-Jun (SAPKβ), or GST-ATF-2 (p38) as substrate. A, autoradiograph of phosphorylated substrates separated using a 15% gel. Substrate bands were excised for counting by scintillation spectrometry, and the data were used to calculate kinase activity. This is indicated numerically below each lane expressed as fold stimulation over basal activity (defined as 1.0) measured in unstimulated cells. B, Western blot of HA-ERK1, HA-SAPKβ, and HA-p38 MAP kinases used for immune complex assays shown in A. Kinases were detected as described in the legend to Fig. 1. The data are typical of more than five separate co-expression and immune complex experiments.View Large Image Figure ViewerDownload Hi-res image Download (PPT)It is now clear that several members of the p21ras superfamily of GTPases are linked to the activation of different MAP kinase family members. For instance, constitutively active p21ras (G12V) stimulates activation of ERK (8Leevers S.J. Marshall C.J. EMBO J. 1992; 11: 569-574Crossref PubMed Scopus (382) Google Scholar), and this may underlie mitogenesis and cellular transformation by this oncogene (19Cowley S. Paterson H. Kemp P. Marshall C.J. Cell. 1994; 77: 841-852Abstract Full Text PDF PubMed Scopus (1845) Google Scholar, 46Sun H. Tonks N.K. Bar-Sagi D. Science. 1994; 266: 285-288Crossref PubMed Scopus (206) Google Scholar). In addition, recent studies have shown that mutationally activated versions of the p21rho GTPase family members p21cdc42 and p21rac elicit enzymatic activation of both JNK/SAPK and p38 but not ERK MAP kinases (10Coso O.A. Chiariello M. Yu J.-C. Teramoto H. Crespo P. Xu N. Miki T. Gutkind J.S. Cell. 1995; 81: 1137-1146Abstract Full Text PDF PubMed Scopus (1559) Google Scholar, 11Minden A. Lin A. Claret F.-X. Abo A. Karin M. Cell. 1995; 81: 1147-1157Abstract Full Text PDF PubMed Scopus (1444) Google Scholar). Interestingly, p21cdc42 and p21rac also stimulate DNA synthesis and appear to play a critical role mediating mitogenesis and transformation by oncogenic p21ras (47Qiu R.-G. Chen J. Kirn D. McCormick F. Symons M. Nature. 1995; 374: 457-459Crossref PubMed Scopus (812) Google Scholar, 48Olson M.F. Ashworth A. Hall A. Science. 1995; 269: 1270-1272Crossref PubMed Scopus (1055) Google Scholar). To test whether M3/6 or MKP-3 retain their activity and selectivity for inhibiting MAP kinases undergoing oncogenic activation, COS-7 cells were triple transfected with constitutively activate p21ras (G12V) or p21rac1 (G12V) together with different MAP kinases and increasing concentrations of plasmid for MKP-3 or M3/6. This experiment shows clearly that as with acute stimulation, M3/6 inhibited effectively p54 SAPKβ activation by constitutive p21rac (G12V) (Fig. 4). Also, as observed with short term exposure to growth factor, MKP-3 blocked ERK1 activation by oncogenic p21ras (G12V) (Fig. 4), whereas M3/6 was completely ineffective (not shown). Importantly, co-transfection with increasing concentration of either MKP-3 or M3/6 plasmid does not alter the level of immunodetectable p54 HA-SAPKβ or HA-ERK1 (Fig. 4). The ability of MKP-3 to suppress chronic MAP kinase activation by p21ras (G12V) together with its clear selectivity for ERK family members could indicate a physiological role as an inhibitor of proliferation or even a tumor suppressor.Fig. 4M3/6 and MKP-3 inhibit SAPKβ and ERK1 activation by constitutive p21rac (G12V) and p21ras (G12V). COS-7 cells were triple transfected with p21rac (RacV12) (0.5 µg of plasmid) or p21ras (RasV12) (0.25 µg of plasmid) as well as HA-SAPKβ or HA-ERK1 (1.0 µg of plasmid) together with 0.1, 0.25, 0.5, 1.0, or 2.0 µg of plasmid expressing Myc-M3/6 or Myc-MKP-3 as indicated. Following 24 h of growth and 16 h of serum starvation, cells were homogenized, and the MAP kinases were immunoprecipitated for immune complex assays using GST-ATF2 (SAPKβ) or myelin basic protein (ERK1) as substrate. A, autoradiograph of phosphorylated substrates separated using a 15% gel. Bands were excised for counting by scintillation spectrometry and calculation of relative kinase activity, which is indicated numerically below each lane. Basal MAP kinase activity in cells not expressing p21rac (G12V) or p21ras (G12V) is defined as 1.0. B, Western blot of immunoprecipitated HA-SAPKβ or HA-ERK1 used for immune complex assays shown in A. The data are typical of three identical co-expression and immune complex experiments.View Large Image Figure ViewerDownload Hi-res image Download (PPT)This is the first account of two dual specificity phosphatases, M3/6 and MKP-3, displaying reciprocal selectivity for inactivating ERK or JNK/SAPK and p38 MAP kinases. The remarkable inactivity of M3/6 against ERK family members indicates a high degree of specificity between MAP kinase family members and has not been demonstrated previously for any phosphatase of this class. These observations with M3/6 and MKP-3 are distinct from experiments using the dual specificity phosphatases PAC1, MKP-2, and CL100/MKP-1, which appear moderately selective when expressed in mammalian cells (49Chu Y. Solski P.A. Khosravi-Far R. Der C.J. Kelly K. J. Biol. Chem. 1996; 271: 6497-6501Abstract Full Text Full Text PDF PubMed Scopus (394) Google Scholar). Our data on selective enzymatic inhibition indicate that regulated expression of MKP-3 and M3/6 could be a critical parameter in both short and long term control of cell function by different MAP kinases. MKP-3 and M3/6 are unique amongst dual specificity phosphatases insofar that they are both localized in cytosolic compartments (40Muda M. Boschert U. Dickinson R. Martinou J.-C. Martinou I. Camps M. Schlegel W. Arkinstall S. J. Biol. Chem. 1996; 271: 4319-4326Abstract Full Text Full Text PDF PubMed Scopus (320) Google Scholar, 44Theodosiou A.M. Rodrigues N.R. Nesbit M.A. Ambrose H.J. Paterson H. McLellan-Arnold E. Boyd Y. Leversha M.A. Owen N. Blake D.J. Ashworth A. Davies K.E. Hum. Mol. Genet. 1996; 96: 675-684Crossref Scopus (49) Google Scholar), whereas other members of this gene family are nuclear (33Rohan P.J. Davis P. Moskaluk C.A. Kearns M. Krutzsch H. Siebenlist U. Kelly K. Science. 1993; 259: 1763-1766Crossref PubMed Scopus (263) Google Scholar, 35Guan K.-L. Butch E. J. Biol. Chem. 1995; 270: 7197-7203Abstract Full Text Full Text PDF PubMed Scopus (169) Google Scholar, 37King A.G. Ozanne B.W. Smythe C. Ashworth A. Oncogene. 1995; 11: 2553-2563PubMed Google Scholar, 38Kwak S.P Dixon J.E. J. Biol. Chem. 1995; 270: 1156-1160Abstract Full Text Full Text PDF PubMed Scopus (114) Google Scholar). The M3/6 gene also possess a translated complex trinucleotide repeat resulting in multiple serine and glycine residues within the COOH-terminal third of the protein (44Theodosiou A.M. Rodrigues N.R. Nesbit M.A. Ambrose H.J. Paterson H. McLellan-Arnold E. Boyd Y. Leversha M.A. Owen N. Blake D.J. Ashworth A. Davies K.E. Hum. Mol. Genet. 1996; 96: 675-684Crossref Scopus (49) Google Scholar). Whether either of these novel characteristics underly their selectivity for MAP kinase inactivation is currently under investigation in our laboratories. INTRODUCTIONThe mitogen activated protein (MAP) kinase 1The abbreviations used are: MAP kinasemitogen-activated protein kinaseERKextracellular signal-regulated kinaseJNK/SAPKc-Jun NH2-terminal kinase/stress-activated protein kinaseHAhemagglutininEGFepidermal growth factor. family comprises the extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK), and p38/RK/CSBP (p38) as three structurally and functionally distinct enzyme classes (1Boulton T.G. Nye S.H. Robbins D.J. Ip N.Y. Radziejewska E. Morgenbesser S.D. DePinho R.A. Panayotatos N. Cobb M.H. Yancopoulos G.D. Cell. 1991; 65: 663-675Abstract Full Text PDF PubMed Scopus (1477) Google Scholar, 2Meloche S. Pages G. Pouyssegur J. Mol. Biol. Cell. 1992; 3: 63-71Crossref PubMed Scopus (130) Google Scholar, 3Derijard B. Hibi M. Wu I.-H. Barrett T. Su B. Deng T. Karin M. Davis R.J. Cell. 1994; 76: 1025-1037Abstract Full Text PDF PubMed Scopus (2949) Google Scholar, 4Han J. Lee J.-D. Bibbs L. Ulevitch R.J. Science. 1994; 265: 808-811Crossref PubMed Scopus (2402) Google Scholar, 5Kyriakis J.M. Banerjee P. Nikolakaki E. Dai T. Rubie E.R. Ahmad M.F. Avruch J. Woodgett J.R. Nature. 1994; 369: 156-160Crossref PubMed Scopus (2408) Google Scholar, 6Lee J.C. Laydon J.T. McDonnell P.C. Gallagher T.F. Kumar S. Green D. McNulty D. Blumenthal M.J. Heys J.R. Landvatter S.W. Strickler J.E. McLaughlin M.M. Siemens I.R. Fisher S.M. Livi G.P. White J.R. Adams J.L. Young P.R. Nature. 1994; 372: 739-746Crossref PubMed Scopus (3121) Google Scholar, 7Rouse J. Cohen P. Trigon S. Morange M. Alonzo-Llamazares A. Zamanillo D. Hunt T. Nebreda A.R. Cell. 1994; 78: 1027-1037Abstract Full Text PDF PubMed Scopus (1494) Google Scholar). ERK family members are activated by a variety of growth and differentiation factors, while MAP kinases of the JNK/SAPK, and p38 class are activated preferentially by cellular stresses, and inflammatory cytokines (1Boulton T.G. Nye S.H. Robbins D.J. Ip N.Y. Radziejewska E. Morgenbesser S.D. DePinho R.A. Panayotatos N. Cobb M.H. Yancopoulos G.D. Cell. 1991; 65: 663-675Abstract Full Text PDF PubMed Scopus (1477) Google Scholar, 2Meloche S. Pages G. Pouyssegur J. Mol. Biol. Cell. 1992; 3: 63-71Crossref PubMed Scopus (130) Google Scholar, 3Derijard B. Hibi M. Wu I.-H. Barrett T. Su B. Deng T. Karin M. Davis R.J. Cell. 1994; 76: 1025-1037Abstract Full Text PDF PubMed Scopus (2949) Google Scholar, 4Han J. Lee J.-D. Bibbs L. Ulevitch R.J. Science. 1994; 265: 808-811Crossref PubMed Scopus (2402) Google Scholar, 5Kyriakis J.M. Banerjee P. Nikolakaki E. Dai T. Rubie E.R. Ahmad M.F. Avruch J. Woodgett J.R. Nature. 1994; 369: 156-160Crossref PubMed Scopus (2408) Google Scholar, 7Rouse J. Cohen P. Trigon S. Morange M. Alonzo-Llamazares A. Zamanillo D. Hunt T. Nebreda A.R. Cell. 1994; 78: 1027-1037Abstract Full Text PDF PubMed Scopus (1494) Google Scholar, 8Leevers S.J. Marshall C.J. EMBO J. 1992; 11: 569-574Crossref PubMed Scopus (382) Google Scholar, 9Crespo P. Xu N. Simonds W.F. Gutkind J.S. Nature. 1994; 369: 418-420Crossref PubMed Scopus (758) Google Scholar, 10Coso O.A. Chiariello M. Yu J.-C. Teramoto H. Crespo P. Xu N. Miki T. Gutkind J.S. Cell. 1995; 81: 1137-1146Abstract Full Text PDF PubMed Scopus (1559) Google Scholar, 11Minden A. Lin A. Claret F.-X. Abo A. Karin M. Cell. 1995; 81: 1147-1157Abstract Full Text PDF PubMed Scopus (1444) Google Scholar, 12Beyaert R. Cuenda A. Vanden Berghe W. Plaisance S. Lee J.C. Haegeman G. Cohen P. Fiers W. EMBO J. 1996; 15: 1914-1923Crossref PubMed Scopus (599) Google Scholar). Activated MAP kinases phosphorylate a range of cellular substrates, including additional kinases and several transcription factors (7Rouse J. Cohen P. Trigon S. Morange M. Alonzo-Llamazares A. Zamanillo D. Hunt T. Nebreda A.R. Cell. 1994; 78: 1027-1037Abstract Full Text PDF PubMed Scopus (1494) Google Scholar, 13Beretta L. Bubois M.-F. Sobel A. Bensaude O. Eur. J. Biochem. 1995; 227: 388-395Crossref PubMed Scopus (53) Google Scholar, 14Cano E. Mahadevan L.C. Trends Biochem. Sci. 1995; 29: 117-122Abstract Full Text PDF Scopus (996) Google Scholar, 15Treisman R. Curr. Opin. Cell Biol. 1996; 8: 205-215Crossref PubMed Scopus (1160) Google Scholar, 16Cahill M.A. Janknecht R. Nordheim A. Curr. Biol. 1996; 6: 16-19Abstract Full Text Full Text PDF PubMed Scopus (171) Google Scholar). MAP kinase-dependent regulation of diverse targets indicates a critical role orchestrating many varied and important cellular processes. Likely functions include a pivotal role for ERK in mediating neuronal differentiation in PC12 cells as well as growth factor-stimulated proliferation and oncogenic transformation in fibroblasts (17Pages G. Lenormand P. L'Allemain G. Chambard J.C. Meloche S. Pouyssegur J. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 8319-8328Crossref PubMed Scopus (923) Google Scholar, 18Sontag E. Fedorov S. Kamibayashi C. Robbins D. Cobb M. Mumby M. Cell. 1993; 75: 887-897Abstract Full Text PDF PubMed Scopus (459) Google Scholar, 19Cowley S. Paterson H. Kemp P. Marshall C.J. Cell. 1994; 77: 841-852Abstract Full Text PDF PubMed Scopus (1845) Google Scholar, 20Mansour S.J. Matten W.T. Hermann A.S. Candia J.M. Rong S. Fukasawa K. Vande Woude G.F. Ahn N.G. Science. 1994; 265: 966-970Crossref PubMed Scopus (1254) Google Scholar, 21Dudley D.T. Pang L. Decker S.J. Bridges A.J. Saltiel A.R. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 7686-7689Crossref PubMed Scopus (2584) Google Scholar). Recent investigations also support the view that activation of JNK/SAPK and p38 MAP kinases are critical in processes mediating platelet aggregation and secretion, in generation of inflammatory cytokines as well as in triggering of apoptotic death in a range of cell types (6Lee J.C. Laydon J.T. McDonnell P.C. Gallagher T.F. Kumar S. Green D. McNulty D. Blumenthal M.J. Heys J.R. Landvatter S.W. Strickler J.E. McLaughlin M.M. Siemens I.R. Fisher S.M. Livi G.P. White J.R. Adams J.L. Young P.R. Nature. 1994; 372: 739-746Crossref PubMed Scopus (3121) Google Scholar, 12Beyaert R. Cuenda A. Vanden Berghe W. Plaisance S. Lee J.C. Haegeman G. Cohen P. Fiers W. EMBO J. 1996; 15: 1914-1923Crossref PubMed Scopus (599) Google Scholar, 22Saklatvala J. Rawlinson L. Waller R.J. Sarsfield S. Lee J.C. Morton L.F. Barnes M.J. Farndale R.W. J. Biol. Chem. 1996; 271: 6586-6589Abstract Full Text Full Text PDF PubMed Scopus (258) Google Scholar, 23Verhelj M. Bose R. Lin X.H. Yao B. Jarvis W.D. Grant S. Birrer M.J. Szabo E. Zon L.I. Kyriakis J.M. Haimovitz-Friedman A. Fuks Z. Kolesnick R.N. Nature. 1996; 380: 75-79Crossref PubMed Scopus (1710) Google Scholar, 24Xia A. Dickens M. Raingeaud J. Davis R.J. Greenberg M.E. Science. 1996; 270: 1326-1331Crossref Scopus (5027) Google Scholar, 25Zanke B.W. Boudreau K. Rubie E. Winnett E. Tibbles L.A. Zon L. Kyriakis J. Liu F.-F. Woodgett J.R. Curr. Biol. 1996; 6: 606-613Abstract Full Text Full Text PDF PubMed Scopus (437) Google Scholar).Full activation of MAP kinases requires dual phosphorylation on threonine and tyrosine residues within kinase domain VIII. Although several upstream kinases acting selectively on ERK, JNK/SAPK, or p38 family members have now been identified (14Cano E. Mahadevan L.C. Trends Biochem. Sci. 1995; 29: 117-122Abstract Full Text PDF Scopus (996) Google Scholar, 16Cahill M.A. Janknecht R. Nordheim A. Curr. Biol. 1996; 6: 16-19Abstract Full Text Full Text PDF PubMed Scopus (171) Google Scholar, 26Marshall C.J. Cell. 1995; 80: 179-185Abstract Full Text PDF PubMed Scopus (4222) Google Scholar), dephosphorylation by specific phosphatases may also play a critical role. An emerging class of dual specificity phosphatases inactivate MAP kinases through dephosphorylating both threonine and tyrosine residues critical for enzymatic activation (27Keyse S.M. Biochem. Biophys. Acta. 1995; 1265: 152-160Crossref PubMed Scopus (233) Google Scholar). To date, 10 distinct dual specificity phosphatase gene family members have been identified. These include CL100/MKP-1 (identical to 3CH134) (28Keyse S.M. Emslie E.A. Nature. 1992; 359: 644-646Crossref PubMed Scopus (568) Google Scholar, 29Charles C.H. Abler A.S. Lau L.F. Oncogene. 1992; 7: 187-190PubMed Google Scholar, 30Alessi D.R. Smythe C. Keyse S.M. Oncogene. 1993; 8: 2015-2020PubMed Google Scholar, 31Sun H. Charles C.H. Lau L.F. Tonks N.K. Cell. 1993; 75: 487-493Abstract Full Text PDF PubMed Scopus (1022) Google Scholar), VHR (32Ishibashi T. Bottaro D.P. Chan A. Miki T. Aaronson S.A. Proc. Natl. Acad. Sci. U. S. A. 1993; 89: 12170-12174Crossref Scopus (180) Google Scholar), PAC1 (33Rohan P.J. Davis P. Moskaluk C.A. Kearns M. Krutzsch H. Siebenlist U. Kelly K. Science. 1993; 259: 1763-1766Crossref PubMed Scopus (263) Google Scholar, 34Ward Y. Gupta S. Jensen P. Wartmann M. Davis R.J. Kelly K. Nature. 1994; 367: 651-654Crossref PubMed Scopus (295) Google Scholar), hVH-2 (also cloned as MKP-2 and TYP-1) (35Guan K.-L. Butch E. J. Biol. Chem. 1995; 270: 7197-7203Abstract Full Text Full Text PDF PubMed Scopus (169) Google Scholar, 36Misra-Press A. Rim C.S. Yao H. Roberson M.S. Stork P.J.S. J. Biol. Chem. 1995; 270: 14587-14596Abstract Full Text Full Text PDF PubMed Scopus (219) Google Scholar, 37King A.G. Ozanne B.W. Smythe C. Ashworth A. Oncogene. 1995; 11: 2553-2563PubMed Google Scholar), hVH-3 (also known as B23) (38Kwak S.P Dixon J.E. J. Biol. Chem. 1995; 270: 1156-1160Abstract Full Text Full Text PDF PubMed Scopus (114) Google Scholar, 39Ishibashi T. Bottaro D.P. Michieli P. Kelley C.A. Aaronson S.A. J. Biol. Chem. 1994; 269: 29897-29902Abstract Full Text PDF PubMed Google Scholar), MKP-3 (identical to rVH-6 and orthologue of PYST1) (40Muda M. Boschert U. Dickinson R. Martinou J.-C. Martinou I. Camps M. Schlegel W. Arkinstall S. J. Biol. Chem. 1996; 271: 4319-4326Abstract Full Text Full Text PDF PubMed Scopus (320) Google Scholar, 41Mourey R.J. Quinn C.V. Campbell J.S. Wenderoth M.P. Hauschka S.D. Krebs E.G. Dixon J.E. J. Biol. Chem. 1996; 271: 3795-3802Abstract Full Text Full Text PDF PubMed Scopus (114) Google Scholar, 42Groom L.A. Sneddon A.A. Alessi D.R. Dowd S. Keyse S.M. EMBO J. 1996; 15: 3621-3632Crossref PubMed Scopus (370) Google Scholar), MKP-X (orthologue of PYST2) (40Muda M. Boschert U. Dickinson R. Martinou J.-C. Martinou I. Camps M. Schlegel W. Arkinstall S. J. Biol. Chem. 1996; 271: 4319-4326Abstract Full Text Full Text PDF PubMed Scopus (320) Google Scholar, 42Groom L.A. Sneddon A.A. Alessi D.R. Dowd S. Keyse S.M. EMBO J. 1996; 15: 3621-3632Crossref PubMed Scopus (370) Google Scholar), MKP-4, 2M. Muda, submitted for publication. hVH-5 (43Martell K.J. Seasholtz A.F. Kwak S.P. Clemens K.K. Dickson J.E. J. Neurochem. 1995; 65: 1823-1833Crossref PubMed Scopus (92) Google Scholar), and M3/6 (44Theodosiou A.M. Rodrigues N.R. Nesbit M.A. Ambrose H.J. Paterson H. McLellan-Arnold E. Boyd Y. Leversha M.A. Owen N. Blake D.J. Ashworth A. Davies K.E. Hum. Mol. Genet. 1996; 96: 675-684Crossref Scopus (49) Google Scholar). These phosphatases all posses a characteristic extended active site motif VXVHCXXGXSRSXTXXXAY(L/I)M (where X is any amino acid) and NH2-terminal CH2 domains possessing homology to the cell cycle regulator Cdc25 phosphatase (45Keyse S.M. Trends Biochem. Sci. 1993; 18: 377-378Abstract Full Text PDF PubMed Scopus (89) Google Scholar). As part of an investigation into the biological function of dual specificity phosphatases, we have observed highly specific regulation of MAP kinases by two recently cloned family members, M3/6 and MKP-3 (40Muda M. Boschert U. Dickinson R. Martinou J.-C. Martinou I. Camps M. Schlegel W. Arkinstall S. J. Biol. Chem. 1996; 271: 4319-4326Abstract Full Text Full Text PDF PubMed Scopus (320) Google Scholar, 44Theodosiou A.M. Rodrigues N.R. Nesbit M.A. Ambrose H.J. Paterson H. McLellan-Arnold E. Boyd Y. Leversha M.A. Owen N. Blake D.J. Ashworth A. Davies K.E. Hum. Mol. Genet. 1996; 96: 675-684Crossref Scopus (49) Google Scholar), and we describe these observations in this report." @default.
- W2065568194 created "2016-06-24" @default.
- W2065568194 creator A5005383467 @default.
- W2065568194 creator A5007219308 @default.
- W2065568194 creator A5015575318 @default.
- W2065568194 creator A5026837926 @default.
- W2065568194 creator A5058552419 @default.
- W2065568194 creator A5058973407 @default.
- W2065568194 creator A5068489786 @default.
- W2065568194 creator A5083316854 @default.
- W2065568194 creator A5042164780 @default.
- W2065568194 date "1996-11-01" @default.
- W2065568194 modified "2023-10-02" @default.
- W2065568194 title "The Dual Specificity Phosphatases M3/6 and MKP-3 Are Highly Selective for Inactivation of Distinct Mitogen-activated Protein Kinases" @default.
- W2065568194 cites W1567065545 @default.
- W2065568194 cites W1587892340 @default.
- W2065568194 cites W1597498191 @default.
- W2065568194 cites W1608764077 @default.
- W2065568194 cites W1956661481 @default.
- W2065568194 cites W1968474526 @default.
- W2065568194 cites W1969158591 @default.
- W2065568194 cites W1971863225 @default.
- W2065568194 cites W1971915141 @default.
- W2065568194 cites W1976385326 @default.
- W2065568194 cites W1976462601 @default.
- W2065568194 cites W1977472414 @default.
- W2065568194 cites W1979881407 @default.
- W2065568194 cites W1983475354 @default.
- W2065568194 cites W1984903682 @default.
- W2065568194 cites W1989480480 @default.
- W2065568194 cites W1995819749 @default.
- W2065568194 cites W2001399809 @default.
- W2065568194 cites W2001521752 @default.
- W2065568194 cites W2011245371 @default.
- W2065568194 cites W2012742195 @default.
- W2065568194 cites W2023412671 @default.
- W2065568194 cites W2024847198 @default.
- W2065568194 cites W2026951979 @default.
- W2065568194 cites W2032449873 @default.
- W2065568194 cites W2032731042 @default.
- W2065568194 cites W2036903712 @default.
- W2065568194 cites W2040611554 @default.
- W2065568194 cites W2042584344 @default.
- W2065568194 cites W2047743989 @default.
- W2065568194 cites W2047994580 @default.
- W2065568194 cites W2055181868 @default.
- W2065568194 cites W2061825298 @default.
- W2065568194 cites W2064129448 @default.
- W2065568194 cites W2073541193 @default.
- W2065568194 cites W2076309204 @default.
- W2065568194 cites W2080352303 @default.
- W2065568194 cites W2085095382 @default.
- W2065568194 cites W2087172814 @default.
- W2065568194 cites W2088481957 @default.
- W2065568194 cites W2095152292 @default.
- W2065568194 cites W2106251845 @default.
- W2065568194 cites W2112086205 @default.
- W2065568194 cites W2115701574 @default.
- W2065568194 cites W2143956778 @default.
- W2065568194 cites W2170539704 @default.
- W2065568194 doi "https://doi.org/10.1074/jbc.271.44.27205" @default.
- W2065568194 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8910287" @default.
- W2065568194 hasPublicationYear "1996" @default.
- W2065568194 type Work @default.
- W2065568194 sameAs 2065568194 @default.
- W2065568194 citedByCount "347" @default.
- W2065568194 countsByYear W20655681942012 @default.
- W2065568194 countsByYear W20655681942013 @default.
- W2065568194 countsByYear W20655681942014 @default.
- W2065568194 countsByYear W20655681942015 @default.
- W2065568194 countsByYear W20655681942016 @default.
- W2065568194 countsByYear W20655681942017 @default.
- W2065568194 countsByYear W20655681942018 @default.
- W2065568194 countsByYear W20655681942019 @default.
- W2065568194 countsByYear W20655681942020 @default.
- W2065568194 countsByYear W20655681942021 @default.
- W2065568194 countsByYear W20655681942022 @default.
- W2065568194 countsByYear W20655681942023 @default.
- W2065568194 crossrefType "journal-article" @default.
- W2065568194 hasAuthorship W2065568194A5005383467 @default.
- W2065568194 hasAuthorship W2065568194A5007219308 @default.
- W2065568194 hasAuthorship W2065568194A5015575318 @default.
- W2065568194 hasAuthorship W2065568194A5026837926 @default.
- W2065568194 hasAuthorship W2065568194A5042164780 @default.
- W2065568194 hasAuthorship W2065568194A5058552419 @default.
- W2065568194 hasAuthorship W2065568194A5058973407 @default.
- W2065568194 hasAuthorship W2065568194A5068489786 @default.
- W2065568194 hasAuthorship W2065568194A5083316854 @default.
- W2065568194 hasBestOaLocation W20655681941 @default.
- W2065568194 hasConcept C11960822 @default.
- W2065568194 hasConcept C124952713 @default.
- W2065568194 hasConcept C132149769 @default.
- W2065568194 hasConcept C142362112 @default.
- W2065568194 hasConcept C178666793 @default.
- W2065568194 hasConcept C184235292 @default.
- W2065568194 hasConcept C185592680 @default.
- W2065568194 hasConcept C2780429522 @default.
- W2065568194 hasConcept C2780980858 @default.