Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065851162> ?p ?o ?g. }
- W2065851162 endingPage "147" @default.
- W2065851162 startingPage "130" @default.
- W2065851162 abstract "Our study concerns an important current problem, that of diffusion of information in social networks. This problem has received significant attention from the Internet research community in the recent times, driven by many potential applications such as viral marketing and sales promotions. In this paper, we focus on the target set selection problem, which involves discovering a small subset of influential players in a given social network, to perform a certain task of information diffusion. The target set selection problem manifests in two forms: 1) top- <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</i> nodes problem and 2) λ -coverage problem. In the top- <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</i> nodes problem, we are required to find a set of <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</i> key nodes that would maximize the number of nodes being influenced in the network. The λ-coverage problem is concerned with finding a set of key nodes having minimal size that can influence a given percentage λ of the nodes in the entire network. We propose a new way of solving these problems using the concept of Shapley value which is a well known solution concept in cooperative game theory. Our approach leads to algorithms which we call the ShaPley value-based Influential Nodes (SPINs) algorithms for solving the top- <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</i> nodes problem and the λ -coverage problem. We compare the performance of the proposed SPIN algorithms with well known algorithms in the literature. Through extensive experimentation on four synthetically generated random graphs and six real-world data sets (Celegans, Jazz, NIPS coauthorship data set, Netscience data set, High-Energy Physics data set, and Political Books data set), we show that the proposed SPIN approach is more powerful and computationally efficient." @default.
- W2065851162 created "2016-06-24" @default.
- W2065851162 creator A5064786558 @default.
- W2065851162 creator A5071999741 @default.
- W2065851162 date "2011-01-01" @default.
- W2065851162 modified "2023-10-14" @default.
- W2065851162 title "A Shapley Value-Based Approach to Discover Influential Nodes in Social Networks" @default.
- W2065851162 cites W1495750374 @default.
- W2065851162 cites W1575346617 @default.
- W2065851162 cites W1654194294 @default.
- W2065851162 cites W1897619428 @default.
- W2065851162 cites W1914027636 @default.
- W2065851162 cites W1964869462 @default.
- W2065851162 cites W1971842701 @default.
- W2065851162 cites W1975617599 @default.
- W2065851162 cites W1994473607 @default.
- W2065851162 cites W2003827431 @default.
- W2065851162 cites W2008006577 @default.
- W2065851162 cites W2008620264 @default.
- W2065851162 cites W2011975873 @default.
- W2065851162 cites W2015953751 @default.
- W2065851162 cites W2021314079 @default.
- W2065851162 cites W2034985458 @default.
- W2065851162 cites W2041157860 @default.
- W2065851162 cites W2042123098 @default.
- W2065851162 cites W2042728064 @default.
- W2065851162 cites W2046116913 @default.
- W2065851162 cites W2056609785 @default.
- W2065851162 cites W2056944867 @default.
- W2065851162 cites W2061820396 @default.
- W2065851162 cites W2098479684 @default.
- W2065851162 cites W2107666336 @default.
- W2065851162 cites W2108858998 @default.
- W2065851162 cites W2109469951 @default.
- W2065851162 cites W2112090702 @default.
- W2065851162 cites W2114696370 @default.
- W2065851162 cites W2141403143 @default.
- W2065851162 cites W3100069540 @default.
- W2065851162 cites W4214502461 @default.
- W2065851162 cites W4252973173 @default.
- W2065851162 cites W950821216 @default.
- W2065851162 doi "https://doi.org/10.1109/tase.2010.2052042" @default.
- W2065851162 hasPublicationYear "2011" @default.
- W2065851162 type Work @default.
- W2065851162 sameAs 2065851162 @default.
- W2065851162 citedByCount "282" @default.
- W2065851162 countsByYear W20658511622012 @default.
- W2065851162 countsByYear W20658511622013 @default.
- W2065851162 countsByYear W20658511622014 @default.
- W2065851162 countsByYear W20658511622015 @default.
- W2065851162 countsByYear W20658511622016 @default.
- W2065851162 countsByYear W20658511622017 @default.
- W2065851162 countsByYear W20658511622018 @default.
- W2065851162 countsByYear W20658511622019 @default.
- W2065851162 countsByYear W20658511622020 @default.
- W2065851162 countsByYear W20658511622021 @default.
- W2065851162 countsByYear W20658511622022 @default.
- W2065851162 countsByYear W20658511622023 @default.
- W2065851162 crossrefType "journal-article" @default.
- W2065851162 hasAuthorship W2065851162A5064786558 @default.
- W2065851162 hasAuthorship W2065851162A5071999741 @default.
- W2065851162 hasConcept C110875604 @default.
- W2065851162 hasConcept C119857082 @default.
- W2065851162 hasConcept C120665830 @default.
- W2065851162 hasConcept C121332964 @default.
- W2065851162 hasConcept C136764020 @default.
- W2065851162 hasConcept C144237770 @default.
- W2065851162 hasConcept C154945302 @default.
- W2065851162 hasConcept C177142836 @default.
- W2065851162 hasConcept C177264268 @default.
- W2065851162 hasConcept C187008535 @default.
- W2065851162 hasConcept C192209626 @default.
- W2065851162 hasConcept C199022921 @default.
- W2065851162 hasConcept C199360897 @default.
- W2065851162 hasConcept C26517878 @default.
- W2065851162 hasConcept C2776291640 @default.
- W2065851162 hasConcept C33923547 @default.
- W2065851162 hasConcept C38652104 @default.
- W2065851162 hasConcept C41008148 @default.
- W2065851162 hasConcept C4727928 @default.
- W2065851162 hasConcept C518677369 @default.
- W2065851162 hasConcept C80444323 @default.
- W2065851162 hasConcept C81917197 @default.
- W2065851162 hasConceptScore W2065851162C110875604 @default.
- W2065851162 hasConceptScore W2065851162C119857082 @default.
- W2065851162 hasConceptScore W2065851162C120665830 @default.
- W2065851162 hasConceptScore W2065851162C121332964 @default.
- W2065851162 hasConceptScore W2065851162C136764020 @default.
- W2065851162 hasConceptScore W2065851162C144237770 @default.
- W2065851162 hasConceptScore W2065851162C154945302 @default.
- W2065851162 hasConceptScore W2065851162C177142836 @default.
- W2065851162 hasConceptScore W2065851162C177264268 @default.
- W2065851162 hasConceptScore W2065851162C187008535 @default.
- W2065851162 hasConceptScore W2065851162C192209626 @default.
- W2065851162 hasConceptScore W2065851162C199022921 @default.
- W2065851162 hasConceptScore W2065851162C199360897 @default.
- W2065851162 hasConceptScore W2065851162C26517878 @default.
- W2065851162 hasConceptScore W2065851162C2776291640 @default.