Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065881793> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2065881793 endingPage "S2" @default.
- W2065881793 startingPage "R588" @default.
- W2065881793 abstract "Autosomal dominant polycystic kidney disease (ADPKD) has a prevalence of 1 in 800 of the world's population and accounts for 10% of individuals who require renal replacement therapy, either dialysis or transplantation. Renal cyst formation occurs as part of a ‘two-hit’ process in which inactivation of both alleles of ADPKD genes leads to abnormalities of cell proliferation, apoptosis and differentiation [[1]Qian F Watnick T Onuchic L Germino G The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I.Cell. 1996; 87: 979-987Abstract Full Text Full Text PDF PubMed Scopus (461) Google Scholar]. Of ADPKD cases, 85% are due to mutations in the PKD1 gene, which encodes a 4,302 amino acid protein, polycystin-1 (PKD1), of unknown function. Comparison of the PKD1 sequence with homologous sequences from mouse and Fugu predicts polycystin-1 to have a large extracellular region of 3,000 amino acid residues, a region containing 11 putative transmembrane segments and a short intracellular tail [[2]Sandford R Sgotto B Aparicio S Brenner S Vaudin M Wilson RK Chissoe S Bateman A Chothia C Hughes J et al.Comparative analysis of the polycystic kidney disease 1 (PKD1) gene reveals an integral membrane glycoprotein with multiple evolutionary conserved domains.Proc Natl Acad Sci USA. 1997; 6: 1483-1489Google Scholar]. A well-defined extracellular domain structure is apparent; the presence of amino-terminal leucine-rich repeats, a C-type-lectin domain and multiple PKD repeats suggests a role in cell–cell or cell–matrix interactions (Figure 1) [[3]Hughes J Ward CJ Peral B Aspinwall R Clark K San Millan JL Gamble V Harris PC The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains.Nat Genet. 1995; 10: 151-160Crossref PubMed Scopus (728) Google Scholar]. So far, no extracellular ligands of polycystin-1 have been identified. Of the intracellular regions of PKD1, functional properties have been defined only for the short 198 amino acid carboxy-terminal region, which contains a predicted coiled-coil domain. These include a direct interaction with the carboxyl terminus of the protein encoded by PKD2, polycystin-2 [[4]Qian F Germino F Cai Y Zhang X Somlo S Germino G PKD1 interacts with PKD2 through a probable coiled-coil domain.Nat Genet. 1997; 16: 179-183Crossref PubMed Scopus (536) Google Scholar], activation of transcription factor AP-1 [[5]Arnould T Kim E Tsiokas L Jochimsen F Gruning W Chang J Walz G The polycystic kidney disease 1 gene product mediates protein kinase C alpha-dependent and c-Jun N-terminal kinase-dependent activation of the transcription factor AP-1.J Biol Chem. 1998; 273: 6013-6018Crossref PubMed Scopus (147) Google Scholar] and activation of heterotrimeric G proteins [[6]Parnell S Magenheimer B Maser R Rankin C Smine A Okamoto T Calvet J The polycystic kidney disease-1 protein, polycystin-1, binds and activates heterotrimeric G-proteins in vitro.Biochem Biophys Res Commun. 1998; 251: 625-631Crossref PubMed Scopus (185) Google Scholar]. The last of these occurs via a motif present in one of polycystin-1's most highly conserved regions. Polycystin-1 may therefore act as a cell-surface receptor or form part of a large membrane-associated complex that is capable of signaling by several different pathways to control cell proliferation and differentiation. To further aid the understanding of this enigmatic protein, we have surveyed all the intracellular regions for potential domains that may suggest novel functions and identify further avenues for experiment. The current model of polycystin-1 topology suggests that there are four intracellular regions that are large enough to contain a discrete protein domain. These regions are between transmembrane (TM) helices TM1 and TM2 (residues, 3,096–3,280), TM3 and TM4 (residues 3,344–3,558), TM5 and TM6 (residues 3,603–3,668) and the carboxy-terminal region after TM11 (residues 4,105–4,302). The high sequence conservation seen in these regions between the human and Fugu polycystin-1 suggest that they are functionally important. We have used each of these regions as a query for the sequence comparison program PSI-BLAST, using an expectation-value (E-value) threshold of 0.001 [[7]Altschul SF Madden TL Schaffer AA Zhang J Zhang Z Miller W Lipman DJ Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Res. 1997; 25: 3389-3402Crossref PubMed Scopus (56917) Google Scholar]. For each of the four intracellular regions, PSI-BLAST returned the known PKD1 orthologues from human, mouse and Fugu. Only one region returned significant matches with PSI-BLAST. The first intracellular region between TM1 and TM2, which represents the most strongly conserved sequence region of PKD1 between human and Fugu[[2]Sandford R Sgotto B Aparicio S Brenner S Vaudin M Wilson RK Chissoe S Bateman A Chothia C Hughes J et al.Comparative analysis of the polycystic kidney disease 1 (PKD1) gene reveals an integral membrane glycoprotein with multiple evolutionary conserved domains.Proc Natl Acad Sci USA. 1997; 6: 1483-1489Google Scholar], was found to match to 67 other sequences in SWISS-PROT version 37 and TrEMBL version 9 [[8]Bairoch A Apweiler R The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999.Nucleic Acids Res. 1999; 27: 49-54Crossref PubMed Scopus (437) Google Scholar]. These sequences include mammalian lipoxygenases, triacylglycerol lipase and lipoprotein lipase. The common feature found in all these alignments was topological and sequence similarity to a β-sandwich domain. We call this new protein domain the PLAT domain (after polycystin-1, lipoxygenase and alpha toxin). The copy of the PLAT domain found in polycystin-1 therefore identifies an important new region of the protein. The three-dimensional structure of the PLAT domain is known for human pancreatic lipase [[9]van Tilbeurgh H Egloff MP Martinez C Rugani N Verger R Cambillau C Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography.Nature. 1993; 362: 814-820Crossref PubMed Scopus (612) Google Scholar], rabbit 15-lipoxygenase [[10]Gillmor SA Villasenor A Fletterick R Sigal E Browner MF The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity.Nat Struct Biol. 1998; 4: 1003-1009Crossref Scopus (378) Google Scholar] and alpha toxin from Clostridium perfringens[[11]Naylor CE Eaton JT Howells A Justin N Moss DS Titball RW Basak AK Structure of the key toxin in gas gangrene.Nat Struct Biol. 1998; 5: 738-746Crossref PubMed Scopus (153) Google Scholar]. The domain is a β-sandwich composed of two sheets of four strands each. The sequence relationship of the alpha toxin to polycystin-1 can be demonstrated by using the sequence of the PLAT domain from the known structure as a query for PSI-BLAST. The search essentially converges to the same family, including the polycystin-1 PLAT domain. Soybean lipoxygenase L-1 [[12]Minor W Steczko J Stec B Otwinowski Z Bolin JT Walter R Axelrod B Crystal structure of soybean lipoxygenase L-1 at 1.4 å resolution.Biochem. 1996; 35: 10687-10701Crossref PubMed Scopus (384) Google Scholar] contains a domain structurally related to the PLAT domains. It is more distant in sequence to the rest of the family; PSI-BLAST is able to find relationships to the rest of the family for only a few sequences. Although structural similarities were noticed between these structures, it was not suggested that they share a common ancestor [[11]Naylor CE Eaton JT Howells A Justin N Moss DS Titball RW Basak AK Structure of the key toxin in gas gangrene.Nat Struct Biol. 1998; 5: 738-746Crossref PubMed Scopus (153) Google Scholar]. The most highly conserved regions in the alignment of known PLAT domains (Figure 2) coincide with the β-strands. Most of the highly conserved residues are buried residues. An exception to this is a surface lysine or arginine that occurs on the surface of the fifth β-strand of all the eukaryotic PLAT domains. In pancreatic lipase, the lysine in this position forms a salt bridge with the procolipase protein. The conservation of a charged surface residue may indicate the location of a conserved ligand-binding site within the PLAT domain. The importance of PLAT domains is underlined by mutations that lead to human disease. Mutations in lipoprotein lipase lead to chylomicronaemia and mutations in triacylglycerol lipase lead to hepatic lipase deficiency [[13]Hegele R Tu L Connelly P Human hepatic lipase mutations and polymorphisms.Hum Mutat. 1992; 1: 320-324Crossref PubMed Scopus (36) Google Scholar]. In pancreatic lipase the PLAT domain is involved in binding to the procolipase protein. This interaction is required to bring the enzymatic active site of the lipase into close contact with its lipid substrate. In 15-lipoxygenase, a protein composed of an amino-terminal β-sandwich (PLAT) and a carboxy-terminal catalytic domain, the PLAT domain may function to localise the enzyme near its membrane or lipoprotein sequestered substrates, by analogy to the lipase–procolipase protein–protein interaction. It is also possible that the PLAT domain of 5-lipoxygenase, another member of the mammalian lipoxygenase family, mediates an interaction with the 5-lipoxygenase activating protein (FLAP), an integral membrane protein. For alpha toxin and plant lipoxygenases, it has been suggested that the PLAT domain interacts directly with the membrane in a Ca2+ dependent manner. Although a Ca2+-binding region has been predicted for alpha toxin from crystallographic data and similarity to eukaryotic calcium-binding C2 domains [[11]Naylor CE Eaton JT Howells A Justin N Moss DS Titball RW Basak AK Structure of the key toxin in gas gangrene.Nat Struct Biol. 1998; 5: 738-746Crossref PubMed Scopus (153) Google Scholar], the conserved residues that form this region are not present in the PLAT domains identified in polycystin-1 or pancreatic lipase. PLAT domains may therefore be involved in protein–protein and protein–lipid interactions. The presence of the PLAT domain in the first cytoplasmic loop of polycystin-1 suggests that this region is important in mediating interactions with other membrane protein(s) involved in polycystin-1 function. A Bateman, The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. R Sandford, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge CB2 2XY, UK. E-mail: [email protected]" @default.
- W2065881793 created "2016-06-24" @default.
- W2065881793 creator A5003428663 @default.
- W2065881793 creator A5059430118 @default.
- W2065881793 date "1999-08-01" @default.
- W2065881793 modified "2023-10-03" @default.
- W2065881793 title "The PLAT domain: a new piece in the PKD1 puzzle" @default.
- W2065881793 cites W1969172212 @default.
- W2065881793 cites W1975207791 @default.
- W2065881793 cites W1994701129 @default.
- W2065881793 cites W2003144438 @default.
- W2065881793 cites W2010556099 @default.
- W2065881793 cites W2014604277 @default.
- W2065881793 cites W2022926357 @default.
- W2065881793 cites W2048209974 @default.
- W2065881793 cites W2057002962 @default.
- W2065881793 cites W2081659168 @default.
- W2065881793 cites W2088811685 @default.
- W2065881793 cites W2100018338 @default.
- W2065881793 cites W2158714788 @default.
- W2065881793 doi "https://doi.org/10.1016/s0960-9822(99)80380-7" @default.
- W2065881793 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10469604" @default.
- W2065881793 hasPublicationYear "1999" @default.
- W2065881793 type Work @default.
- W2065881793 sameAs 2065881793 @default.
- W2065881793 citedByCount "118" @default.
- W2065881793 countsByYear W20658817932012 @default.
- W2065881793 countsByYear W20658817932013 @default.
- W2065881793 countsByYear W20658817932014 @default.
- W2065881793 countsByYear W20658817932015 @default.
- W2065881793 countsByYear W20658817932016 @default.
- W2065881793 countsByYear W20658817932017 @default.
- W2065881793 countsByYear W20658817932018 @default.
- W2065881793 countsByYear W20658817932019 @default.
- W2065881793 countsByYear W20658817932020 @default.
- W2065881793 countsByYear W20658817932021 @default.
- W2065881793 countsByYear W20658817932022 @default.
- W2065881793 countsByYear W20658817932023 @default.
- W2065881793 crossrefType "journal-article" @default.
- W2065881793 hasAuthorship W2065881793A5003428663 @default.
- W2065881793 hasAuthorship W2065881793A5059430118 @default.
- W2065881793 hasBestOaLocation W20658817931 @default.
- W2065881793 hasConcept C100773827 @default.
- W2065881793 hasConcept C134306372 @default.
- W2065881793 hasConcept C2780091579 @default.
- W2065881793 hasConcept C2780145431 @default.
- W2065881793 hasConcept C33923547 @default.
- W2065881793 hasConcept C36503486 @default.
- W2065881793 hasConcept C54355233 @default.
- W2065881793 hasConcept C70721500 @default.
- W2065881793 hasConcept C78458016 @default.
- W2065881793 hasConcept C86803240 @default.
- W2065881793 hasConceptScore W2065881793C100773827 @default.
- W2065881793 hasConceptScore W2065881793C134306372 @default.
- W2065881793 hasConceptScore W2065881793C2780091579 @default.
- W2065881793 hasConceptScore W2065881793C2780145431 @default.
- W2065881793 hasConceptScore W2065881793C33923547 @default.
- W2065881793 hasConceptScore W2065881793C36503486 @default.
- W2065881793 hasConceptScore W2065881793C54355233 @default.
- W2065881793 hasConceptScore W2065881793C70721500 @default.
- W2065881793 hasConceptScore W2065881793C78458016 @default.
- W2065881793 hasConceptScore W2065881793C86803240 @default.
- W2065881793 hasIssue "16" @default.
- W2065881793 hasLocation W20658817931 @default.
- W2065881793 hasLocation W20658817932 @default.
- W2065881793 hasOpenAccess W2065881793 @default.
- W2065881793 hasPrimaryLocation W20658817931 @default.
- W2065881793 hasRelatedWork W1997770566 @default.
- W2065881793 hasRelatedWork W2006264290 @default.
- W2065881793 hasRelatedWork W2034736453 @default.
- W2065881793 hasRelatedWork W2055925137 @default.
- W2065881793 hasRelatedWork W2061542922 @default.
- W2065881793 hasRelatedWork W2422215742 @default.
- W2065881793 hasRelatedWork W4235748225 @default.
- W2065881793 hasRelatedWork W4236969087 @default.
- W2065881793 hasRelatedWork W4250751887 @default.
- W2065881793 hasRelatedWork W4250812939 @default.
- W2065881793 hasVolume "9" @default.
- W2065881793 isParatext "false" @default.
- W2065881793 isRetracted "false" @default.
- W2065881793 magId "2065881793" @default.
- W2065881793 workType "article" @default.