Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065961009> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2065961009 endingPage "87" @default.
- W2065961009 startingPage "74" @default.
- W2065961009 abstract "Workface assessment – the process of determining the overall activity rates of onsite construction workers throughout a day – typically involves manual visual observations which are time-consuming and labor-intensive. To minimize subjectivity and the time required for conducting detailed assessments, and allowing managers to spend their time on the more important task of assessing and implementing improvements, we propose a new inexpensive vision-based method using RGB-D sensors that is applicable to interior construction operations. This is a particularly challenging task as construction activities have a large range of intra-class variability including varying sequences of body posture and time-spent on each individual activity. The skeleton extraction algorithms from RGB-D sequences produce noisy outputs when workers interact with tools or when there is a significant body occlusion within the camera's field-of-view. Existing vision-based methods are also limited as they can primarily classify “atomic” activities from RGB-D sequences involving one worker conducting a single activity. To address these limitations, our method includes three components: 1) an algorithm for detecting, tracking, and extracting body skeleton features from depth images; 2) a discriminative bag-of-poses activity classifier for classifying single visual activities from a given body skeleton sequence; and 3) a Hidden Markov Model to represent emission probabilities in the form of a statistical distribution of single activity classifiers. For training and testing purposes, we introduce a new dataset of eleven RGB-D sequences for interior drywall construction operations involving three actual construction workers conducting eight different activities in various interior locations. Our results with an average accuracy of 76% on the testing dataset show the promise of vision-based methods using RGB-D sequences for facilitating the activity analysis workface assessment." @default.
- W2065961009 created "2016-06-24" @default.
- W2065961009 creator A5009179248 @default.
- W2065961009 creator A5018518655 @default.
- W2065961009 creator A5081955215 @default.
- W2065961009 date "2014-12-01" @default.
- W2065961009 modified "2023-10-05" @default.
- W2065961009 title "Vision-based workface assessment using depth images for activity analysis of interior construction operations" @default.
- W2065961009 cites W1976193075 @default.
- W2065961009 cites W1976484689 @default.
- W2065961009 cites W1979763462 @default.
- W2065961009 cites W1983902753 @default.
- W2065961009 cites W1995132732 @default.
- W2065961009 cites W2008748781 @default.
- W2065961009 cites W2010256297 @default.
- W2065961009 cites W2014850865 @default.
- W2065961009 cites W2019832769 @default.
- W2065961009 cites W2023738512 @default.
- W2065961009 cites W2036695573 @default.
- W2065961009 cites W2057753645 @default.
- W2065961009 cites W2067534425 @default.
- W2065961009 cites W2067755649 @default.
- W2065961009 cites W2068897309 @default.
- W2065961009 cites W2069944649 @default.
- W2065961009 cites W2076796478 @default.
- W2065961009 cites W2076871221 @default.
- W2065961009 cites W2082459479 @default.
- W2065961009 cites W2088761457 @default.
- W2065961009 cites W2099806072 @default.
- W2065961009 cites W2109192831 @default.
- W2065961009 cites W2111361244 @default.
- W2065961009 cites W2117409414 @default.
- W2065961009 cites W2118401377 @default.
- W2065961009 cites W2125838338 @default.
- W2065961009 cites W2135344418 @default.
- W2065961009 cites W2142384583 @default.
- W2065961009 cites W2146136606 @default.
- W2065961009 cites W2149476493 @default.
- W2065961009 cites W2153635508 @default.
- W2065961009 cites W2159329043 @default.
- W2065961009 doi "https://doi.org/10.1016/j.autcon.2014.08.003" @default.
- W2065961009 hasPublicationYear "2014" @default.
- W2065961009 type Work @default.
- W2065961009 sameAs 2065961009 @default.
- W2065961009 citedByCount "87" @default.
- W2065961009 countsByYear W20659610092015 @default.
- W2065961009 countsByYear W20659610092016 @default.
- W2065961009 countsByYear W20659610092017 @default.
- W2065961009 countsByYear W20659610092018 @default.
- W2065961009 countsByYear W20659610092019 @default.
- W2065961009 countsByYear W20659610092020 @default.
- W2065961009 countsByYear W20659610092021 @default.
- W2065961009 countsByYear W20659610092022 @default.
- W2065961009 countsByYear W20659610092023 @default.
- W2065961009 crossrefType "journal-article" @default.
- W2065961009 hasAuthorship W2065961009A5009179248 @default.
- W2065961009 hasAuthorship W2065961009A5018518655 @default.
- W2065961009 hasAuthorship W2065961009A5081955215 @default.
- W2065961009 hasConcept C127413603 @default.
- W2065961009 hasConcept C153180895 @default.
- W2065961009 hasConcept C154945302 @default.
- W2065961009 hasConcept C201995342 @default.
- W2065961009 hasConcept C23224414 @default.
- W2065961009 hasConcept C2780451532 @default.
- W2065961009 hasConcept C31972630 @default.
- W2065961009 hasConcept C41008148 @default.
- W2065961009 hasConcept C82990744 @default.
- W2065961009 hasConcept C95623464 @default.
- W2065961009 hasConcept C97931131 @default.
- W2065961009 hasConceptScore W2065961009C127413603 @default.
- W2065961009 hasConceptScore W2065961009C153180895 @default.
- W2065961009 hasConceptScore W2065961009C154945302 @default.
- W2065961009 hasConceptScore W2065961009C201995342 @default.
- W2065961009 hasConceptScore W2065961009C23224414 @default.
- W2065961009 hasConceptScore W2065961009C2780451532 @default.
- W2065961009 hasConceptScore W2065961009C31972630 @default.
- W2065961009 hasConceptScore W2065961009C41008148 @default.
- W2065961009 hasConceptScore W2065961009C82990744 @default.
- W2065961009 hasConceptScore W2065961009C95623464 @default.
- W2065961009 hasConceptScore W2065961009C97931131 @default.
- W2065961009 hasLocation W20659610091 @default.
- W2065961009 hasOpenAccess W2065961009 @default.
- W2065961009 hasPrimaryLocation W20659610091 @default.
- W2065961009 hasRelatedWork W2024160000 @default.
- W2065961009 hasRelatedWork W2061273563 @default.
- W2065961009 hasRelatedWork W2134071121 @default.
- W2065961009 hasRelatedWork W2134999511 @default.
- W2065961009 hasRelatedWork W2283162247 @default.
- W2065961009 hasRelatedWork W2285052147 @default.
- W2065961009 hasRelatedWork W2729514902 @default.
- W2065961009 hasRelatedWork W2773500201 @default.
- W2065961009 hasRelatedWork W4212983513 @default.
- W2065961009 hasRelatedWork W2073139667 @default.
- W2065961009 hasVolume "48" @default.
- W2065961009 isParatext "false" @default.
- W2065961009 isRetracted "false" @default.
- W2065961009 magId "2065961009" @default.
- W2065961009 workType "article" @default.