Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065961675> ?p ?o ?g. }
- W2065961675 endingPage "243" @default.
- W2065961675 startingPage "226" @default.
- W2065961675 abstract "Significant advances in flood inundation modelling have been made in the last decade through the use of a new generation of 2D hydraulic numerical models. These offer the potential to predict the local pattern and timing of flood depth and velocity, enabling informed flood risk zoning and improved emergency planning. With the availability of high resolution DEMs derived from airborne lidar, these models can theoretically now be routinely parameterized to represent considerable topographic complexity, even in urban areas where the potential exists to represent flows at the scale of individual buildings. Currently, however, computational constraints on conventional finite element and volume codes typically require model discretization at scales well below those achievable with lidar and are thus unable to make optimal use of this emerging data stream. In this paper we review two strategies that attempt to address this mismatch between model and data resolution in an effort to improve urban flood forecasts. The first of these strives for a solution by simplifying the mathematical formulation of the numerical model by using a computationally efficient 2D raster storage cell approach coupled to a 1D channel model. This parsimonious model structure enables simulations over large model domains offering the opportunity to employ a topographic discretization strategy which explicitly represents the built environment. The second approach seeks to further reduce the computational overhead of this raster method by employing a subgrid parameterization to represent the effect of buildings and micro-relief on flow pathways and floodplain storage. This multi-scale methodology enables highly efficient model applications at coarse spatial resolutions while retaining information about the complex geometry of the built environment. These two strategies are evaluated through numerical experiments designed to reconstruct a flood in the small town of Linton in southern England, which occurred in response to a 1 in 250 year rainfall event in October 2001. Results from both approaches are encouraging, with the spatial pattern of inundation and flood wave propagation matching observations well. Both show significant advantages over a coarse resolution model without subgrid parameterisation, particularly in terms of their ability to reproduce both hydrograph and inundation depth measurements simultaneously, without need for recalibration. The subgrid parameterization is shown to achieve this without contributing significant computational complexity and reduces model run-times by an order of magnitude." @default.
- W2065961675 created "2016-06-24" @default.
- W2065961675 creator A5002412271 @default.
- W2065961675 creator A5068686112 @default.
- W2065961675 date "2007-10-01" @default.
- W2065961675 modified "2023-10-09" @default.
- W2065961675 title "Reduced complexity strategies for modelling urban floodplain inundation" @default.
- W2065961675 cites W1886162980 @default.
- W2065961675 cites W1964450030 @default.
- W2065961675 cites W1971234092 @default.
- W2065961675 cites W1983279054 @default.
- W2065961675 cites W1997042197 @default.
- W2065961675 cites W2002680866 @default.
- W2065961675 cites W2003702244 @default.
- W2065961675 cites W2009319995 @default.
- W2065961675 cites W2018871895 @default.
- W2065961675 cites W2027266737 @default.
- W2065961675 cites W2028101777 @default.
- W2065961675 cites W2029376597 @default.
- W2065961675 cites W2030173739 @default.
- W2065961675 cites W2045699194 @default.
- W2065961675 cites W2054631580 @default.
- W2065961675 cites W2054732079 @default.
- W2065961675 cites W2055695879 @default.
- W2065961675 cites W2058281299 @default.
- W2065961675 cites W2062985661 @default.
- W2065961675 cites W2067693645 @default.
- W2065961675 cites W2070776784 @default.
- W2065961675 cites W2089128787 @default.
- W2065961675 cites W2089594470 @default.
- W2065961675 cites W2091311423 @default.
- W2065961675 cites W2100538798 @default.
- W2065961675 cites W2101044141 @default.
- W2065961675 cites W2101661671 @default.
- W2065961675 cites W2111840316 @default.
- W2065961675 cites W2112884744 @default.
- W2065961675 cites W2118805595 @default.
- W2065961675 cites W2124738823 @default.
- W2065961675 cites W2128762775 @default.
- W2065961675 cites W2136998535 @default.
- W2065961675 cites W2149624144 @default.
- W2065961675 cites W2157539439 @default.
- W2065961675 cites W2158237752 @default.
- W2065961675 cites W2162711556 @default.
- W2065961675 cites W2163952144 @default.
- W2065961675 cites W2179763950 @default.
- W2065961675 doi "https://doi.org/10.1016/j.geomorph.2006.10.031" @default.
- W2065961675 hasPublicationYear "2007" @default.
- W2065961675 type Work @default.
- W2065961675 sameAs 2065961675 @default.
- W2065961675 citedByCount "105" @default.
- W2065961675 countsByYear W20659616752012 @default.
- W2065961675 countsByYear W20659616752013 @default.
- W2065961675 countsByYear W20659616752014 @default.
- W2065961675 countsByYear W20659616752015 @default.
- W2065961675 countsByYear W20659616752016 @default.
- W2065961675 countsByYear W20659616752017 @default.
- W2065961675 countsByYear W20659616752018 @default.
- W2065961675 countsByYear W20659616752019 @default.
- W2065961675 countsByYear W20659616752020 @default.
- W2065961675 countsByYear W20659616752021 @default.
- W2065961675 countsByYear W20659616752022 @default.
- W2065961675 countsByYear W20659616752023 @default.
- W2065961675 crossrefType "journal-article" @default.
- W2065961675 hasAuthorship W2065961675A5002412271 @default.
- W2065961675 hasAuthorship W2065961675A5068686112 @default.
- W2065961675 hasConcept C111919701 @default.
- W2065961675 hasConcept C11413529 @default.
- W2065961675 hasConcept C127313418 @default.
- W2065961675 hasConcept C127413603 @default.
- W2065961675 hasConcept C134306372 @default.
- W2065961675 hasConcept C147176958 @default.
- W2065961675 hasConcept C154945302 @default.
- W2065961675 hasConcept C155681218 @default.
- W2065961675 hasConcept C165464430 @default.
- W2065961675 hasConcept C166957645 @default.
- W2065961675 hasConcept C181843262 @default.
- W2065961675 hasConcept C181844469 @default.
- W2065961675 hasConcept C205649164 @default.
- W2065961675 hasConcept C2778755073 @default.
- W2065961675 hasConcept C2779960059 @default.
- W2065961675 hasConcept C33923547 @default.
- W2065961675 hasConcept C41008148 @default.
- W2065961675 hasConcept C58640448 @default.
- W2065961675 hasConcept C62649853 @default.
- W2065961675 hasConcept C73000952 @default.
- W2065961675 hasConcept C74256435 @default.
- W2065961675 hasConceptScore W2065961675C111919701 @default.
- W2065961675 hasConceptScore W2065961675C11413529 @default.
- W2065961675 hasConceptScore W2065961675C127313418 @default.
- W2065961675 hasConceptScore W2065961675C127413603 @default.
- W2065961675 hasConceptScore W2065961675C134306372 @default.
- W2065961675 hasConceptScore W2065961675C147176958 @default.
- W2065961675 hasConceptScore W2065961675C154945302 @default.
- W2065961675 hasConceptScore W2065961675C155681218 @default.
- W2065961675 hasConceptScore W2065961675C165464430 @default.
- W2065961675 hasConceptScore W2065961675C166957645 @default.
- W2065961675 hasConceptScore W2065961675C181843262 @default.