Matches in SemOpenAlex for { <https://semopenalex.org/work/W2065987610> ?p ?o ?g. }
- W2065987610 endingPage "196" @default.
- W2065987610 startingPage "167" @default.
- W2065987610 abstract "Nonparametric regression is a powerful tool to estimate nonlinear relations between some predictors and a response variable. However, when the number of predictors is high, nonparametric estimators may suffer from the curse of dimensionality. In this chapter, we show how a dimension reduction method (namely Sliced Inverse Regression) can be combined with nonparametric kernel regression to overcome this drawback. The methods are illustrated both on simulated datasets as well as on an astronomy dataset using the R software." @default.
- W2065987610 created "2016-06-24" @default.
- W2065987610 creator A5055228462 @default.
- W2065987610 creator A5088129029 @default.
- W2065987610 date "2014-01-01" @default.
- W2065987610 modified "2023-10-06" @default.
- W2065987610 title "An Introduction to Dimension Reduction in Nonparametric Kernel Regression" @default.
- W2065987610 cites W1965028720 @default.
- W2065987610 cites W1966429388 @default.
- W2065987610 cites W1970915113 @default.
- W2065987610 cites W1971713783 @default.
- W2065987610 cites W1973167793 @default.
- W2065987610 cites W1983536225 @default.
- W2065987610 cites W1998167131 @default.
- W2065987610 cites W2001361955 @default.
- W2065987610 cites W2014268383 @default.
- W2065987610 cites W2024307779 @default.
- W2065987610 cites W2027386100 @default.
- W2065987610 cites W2030753668 @default.
- W2065987610 cites W2031647880 @default.
- W2065987610 cites W2031676838 @default.
- W2065987610 cites W2042255949 @default.
- W2065987610 cites W2047547937 @default.
- W2065987610 cites W2049735124 @default.
- W2065987610 cites W2053906871 @default.
- W2065987610 cites W2054544847 @default.
- W2065987610 cites W2055710362 @default.
- W2065987610 cites W2064546042 @default.
- W2065987610 cites W2068415701 @default.
- W2065987610 cites W2076857046 @default.
- W2065987610 cites W2076944607 @default.
- W2065987610 cites W2081988173 @default.
- W2065987610 cites W2087717467 @default.
- W2065987610 cites W2091227993 @default.
- W2065987610 cites W2093701508 @default.
- W2065987610 cites W2107195252 @default.
- W2065987610 cites W2114787170 @default.
- W2065987610 cites W2118020555 @default.
- W2065987610 cites W2124813964 @default.
- W2065987610 cites W2125834041 @default.
- W2065987610 cites W2154080901 @default.
- W2065987610 cites W2163490846 @default.
- W2065987610 cites W2964108700 @default.
- W2065987610 cites W3104859200 @default.
- W2065987610 doi "https://doi.org/10.1051/eas/1466012" @default.
- W2065987610 hasPublicationYear "2014" @default.
- W2065987610 type Work @default.
- W2065987610 sameAs 2065987610 @default.
- W2065987610 citedByCount "0" @default.
- W2065987610 crossrefType "journal-article" @default.
- W2065987610 hasAuthorship W2065987610A5055228462 @default.
- W2065987610 hasAuthorship W2065987610A5088129029 @default.
- W2065987610 hasBestOaLocation W20659876102 @default.
- W2065987610 hasConcept C102366305 @default.
- W2065987610 hasConcept C105795698 @default.
- W2065987610 hasConcept C111030470 @default.
- W2065987610 hasConcept C118615104 @default.
- W2065987610 hasConcept C122280245 @default.
- W2065987610 hasConcept C12267149 @default.
- W2065987610 hasConcept C149782125 @default.
- W2065987610 hasConcept C154945302 @default.
- W2065987610 hasConcept C185429906 @default.
- W2065987610 hasConcept C19539793 @default.
- W2065987610 hasConcept C200695384 @default.
- W2065987610 hasConcept C202444582 @default.
- W2065987610 hasConcept C33676613 @default.
- W2065987610 hasConcept C33923547 @default.
- W2065987610 hasConcept C41008148 @default.
- W2065987610 hasConcept C41341539 @default.
- W2065987610 hasConcept C70518039 @default.
- W2065987610 hasConcept C74127309 @default.
- W2065987610 hasConcept C74193536 @default.
- W2065987610 hasConcept C83546350 @default.
- W2065987610 hasConceptScore W2065987610C102366305 @default.
- W2065987610 hasConceptScore W2065987610C105795698 @default.
- W2065987610 hasConceptScore W2065987610C111030470 @default.
- W2065987610 hasConceptScore W2065987610C118615104 @default.
- W2065987610 hasConceptScore W2065987610C122280245 @default.
- W2065987610 hasConceptScore W2065987610C12267149 @default.
- W2065987610 hasConceptScore W2065987610C149782125 @default.
- W2065987610 hasConceptScore W2065987610C154945302 @default.
- W2065987610 hasConceptScore W2065987610C185429906 @default.
- W2065987610 hasConceptScore W2065987610C19539793 @default.
- W2065987610 hasConceptScore W2065987610C200695384 @default.
- W2065987610 hasConceptScore W2065987610C202444582 @default.
- W2065987610 hasConceptScore W2065987610C33676613 @default.
- W2065987610 hasConceptScore W2065987610C33923547 @default.
- W2065987610 hasConceptScore W2065987610C41008148 @default.
- W2065987610 hasConceptScore W2065987610C41341539 @default.
- W2065987610 hasConceptScore W2065987610C70518039 @default.
- W2065987610 hasConceptScore W2065987610C74127309 @default.
- W2065987610 hasConceptScore W2065987610C74193536 @default.
- W2065987610 hasConceptScore W2065987610C83546350 @default.
- W2065987610 hasLocation W20659876101 @default.
- W2065987610 hasLocation W20659876102 @default.
- W2065987610 hasLocation W20659876103 @default.
- W2065987610 hasLocation W20659876104 @default.
- W2065987610 hasLocation W20659876105 @default.