Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066058961> ?p ?o ?g. }
- W2066058961 endingPage "e50698" @default.
- W2066058961 startingPage "e50698" @default.
- W2066058961 abstract "Diagnoses using imaging-based measures alone offer the hope of improving the accuracy of clinical diagnosis, thereby reducing the costs associated with incorrect treatments. Previous attempts to use brain imaging for diagnosis, however, have had only limited success in diagnosing patients who are independent of the samples used to derive the diagnostic algorithms. We aimed to develop a classification algorithm that can accurately diagnose chronic, well-characterized neuropsychiatric illness in single individuals, given the availability of sufficiently precise delineations of brain regions across several neural systems in anatomical MR images of the brain.We have developed an automated method to diagnose individuals as having one of various neuropsychiatric illnesses using only anatomical MRI scans. The method employs a semi-supervised learning algorithm that discovers natural groupings of brains based on the spatial patterns of variation in the morphology of the cerebral cortex and other brain regions. We used split-half and leave-one-out cross-validation analyses in large MRI datasets to assess the reproducibility and diagnostic accuracy of those groupings.In MRI datasets from persons with Attention-Deficit/Hyperactivity Disorder, Schizophrenia, Tourette Syndrome, Bipolar Disorder, or persons at high or low familial risk for Major Depressive Disorder, our method discriminated with high specificity and nearly perfect sensitivity the brains of persons who had one specific neuropsychiatric disorder from the brains of healthy participants and the brains of persons who had a different neuropsychiatric disorder.Although the classification algorithm presupposes the availability of precisely delineated brain regions, our findings suggest that patterns of morphological variation across brain surfaces, extracted from MRI scans alone, can successfully diagnose the presence of chronic neuropsychiatric disorders. Extensions of these methods are likely to provide biomarkers that will aid in identifying biological subtypes of those disorders, predicting disease course, and individualizing treatments for a wide range of neuropsychiatric illnesses." @default.
- W2066058961 created "2016-06-24" @default.
- W2066058961 creator A5018502448 @default.
- W2066058961 creator A5027835055 @default.
- W2066058961 creator A5060318339 @default.
- W2066058961 creator A5061363473 @default.
- W2066058961 creator A5066527489 @default.
- W2066058961 creator A5069070301 @default.
- W2066058961 creator A5080851216 @default.
- W2066058961 creator A5090489079 @default.
- W2066058961 date "2012-12-07" @default.
- W2066058961 modified "2023-10-16" @default.
- W2066058961 title "Anatomical Brain Images Alone Can Accurately Diagnose Chronic Neuropsychiatric Illnesses" @default.
- W2066058961 cites W1514128735 @default.
- W2066058961 cites W1564761171 @default.
- W2066058961 cites W1965235192 @default.
- W2066058961 cites W1968564639 @default.
- W2066058961 cites W1977465442 @default.
- W2066058961 cites W1979062697 @default.
- W2066058961 cites W1983302342 @default.
- W2066058961 cites W1986452376 @default.
- W2066058961 cites W2001700591 @default.
- W2066058961 cites W2004421347 @default.
- W2066058961 cites W2004554257 @default.
- W2066058961 cites W2005115622 @default.
- W2066058961 cites W2005133023 @default.
- W2066058961 cites W2005792843 @default.
- W2066058961 cites W2007804187 @default.
- W2066058961 cites W2012267789 @default.
- W2066058961 cites W2016740629 @default.
- W2066058961 cites W2019101336 @default.
- W2066058961 cites W2021787435 @default.
- W2066058961 cites W2022141086 @default.
- W2066058961 cites W2025591694 @default.
- W2066058961 cites W2033305857 @default.
- W2066058961 cites W2033713584 @default.
- W2066058961 cites W2040545532 @default.
- W2066058961 cites W2048161213 @default.
- W2066058961 cites W2057310076 @default.
- W2066058961 cites W2059916315 @default.
- W2066058961 cites W2063473805 @default.
- W2066058961 cites W2069456254 @default.
- W2066058961 cites W2070674601 @default.
- W2066058961 cites W2086669609 @default.
- W2066058961 cites W2113532276 @default.
- W2066058961 cites W2117612274 @default.
- W2066058961 cites W2119848633 @default.
- W2066058961 cites W2120111102 @default.
- W2066058961 cites W2133371669 @default.
- W2066058961 cites W2135699751 @default.
- W2066058961 cites W2139362564 @default.
- W2066058961 cites W2140606211 @default.
- W2066058961 cites W2140935196 @default.
- W2066058961 cites W2144081409 @default.
- W2066058961 cites W2151639793 @default.
- W2066058961 cites W2154394735 @default.
- W2066058961 cites W2157848968 @default.
- W2066058961 cites W2161037087 @default.
- W2066058961 cites W2161144725 @default.
- W2066058961 cites W2162253495 @default.
- W2066058961 cites W2164435545 @default.
- W2066058961 cites W2165673024 @default.
- W2066058961 cites W2171831801 @default.
- W2066058961 cites W4233857083 @default.
- W2066058961 doi "https://doi.org/10.1371/journal.pone.0050698" @default.
- W2066058961 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3517530" @default.
- W2066058961 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23236384" @default.
- W2066058961 hasPublicationYear "2012" @default.
- W2066058961 type Work @default.
- W2066058961 sameAs 2066058961 @default.
- W2066058961 citedByCount "72" @default.
- W2066058961 countsByYear W20660589612013 @default.
- W2066058961 countsByYear W20660589612014 @default.
- W2066058961 countsByYear W20660589612015 @default.
- W2066058961 countsByYear W20660589612016 @default.
- W2066058961 countsByYear W20660589612017 @default.
- W2066058961 countsByYear W20660589612018 @default.
- W2066058961 countsByYear W20660589612019 @default.
- W2066058961 countsByYear W20660589612020 @default.
- W2066058961 countsByYear W20660589612021 @default.
- W2066058961 countsByYear W20660589612022 @default.
- W2066058961 countsByYear W20660589612023 @default.
- W2066058961 crossrefType "journal-article" @default.
- W2066058961 hasAuthorship W2066058961A5018502448 @default.
- W2066058961 hasAuthorship W2066058961A5027835055 @default.
- W2066058961 hasAuthorship W2066058961A5060318339 @default.
- W2066058961 hasAuthorship W2066058961A5061363473 @default.
- W2066058961 hasAuthorship W2066058961A5066527489 @default.
- W2066058961 hasAuthorship W2066058961A5069070301 @default.
- W2066058961 hasAuthorship W2066058961A5080851216 @default.
- W2066058961 hasAuthorship W2066058961A5090489079 @default.
- W2066058961 hasBestOaLocation W20660589611 @default.
- W2066058961 hasConcept C118552586 @default.
- W2066058961 hasConcept C126838900 @default.
- W2066058961 hasConcept C142724271 @default.
- W2066058961 hasConcept C143409427 @default.
- W2066058961 hasConcept C145940234 @default.
- W2066058961 hasConcept C15744967 @default.