Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066154710> ?p ?o ?g. }
- W2066154710 endingPage "1659" @default.
- W2066154710 startingPage "1649" @default.
- W2066154710 abstract "Object parsing and segmentation from point clouds are challenging tasks because the relevant data is available only as thin structures along object boundaries or other features, and is corrupted by large amounts of noise. To handle this kind of data, flexible shape models are desired that can accurately follow the object boundaries. Popular models such as active shape and active appearance models (AAMs) lack the necessary flexibility for this task, while recent approaches such as the recursive compositional models make model simplifications to obtain computational guarantees. This paper investigates a hierarchical Bayesian model of shape and appearance in a generative setting. The input data is explained by an object parsing layer which is a deformation of a hidden principal component analysis (PCA) shape model with Gaussian prior. The paper also introduces a novel efficient inference algorithm that uses informed data-driven proposals to initialize local searches for the hidden variables. Applied to the problem of object parsing from structured point clouds such as edge detection images, the proposed approach obtains state-of-the-art parsing errors on two standard datasets without using any intensity information." @default.
- W2066154710 created "2016-06-24" @default.
- W2066154710 creator A5052175239 @default.
- W2066154710 date "2013-07-01" @default.
- W2066154710 modified "2023-10-16" @default.
- W2066154710 title "Hierarchical Object Parsing from Structured Noisy Point Clouds" @default.
- W2066154710 cites W1555017801 @default.
- W2066154710 cites W1608498920 @default.
- W2066154710 cites W1969735849 @default.
- W2066154710 cites W2008665443 @default.
- W2066154710 cites W2025564919 @default.
- W2066154710 cites W2038952578 @default.
- W2066154710 cites W2057321067 @default.
- W2066154710 cites W2078238424 @default.
- W2066154710 cites W2079930597 @default.
- W2066154710 cites W2090901581 @default.
- W2066154710 cites W2097137218 @default.
- W2066154710 cites W2099712288 @default.
- W2066154710 cites W2105303837 @default.
- W2066154710 cites W2111522305 @default.
- W2066154710 cites W2116773539 @default.
- W2066154710 cites W2116877738 @default.
- W2066154710 cites W2119290843 @default.
- W2066154710 cites W2121782097 @default.
- W2066154710 cites W2125310690 @default.
- W2066154710 cites W2127028853 @default.
- W2066154710 cites W2128262632 @default.
- W2066154710 cites W2132447622 @default.
- W2066154710 cites W2134529554 @default.
- W2066154710 cites W2135085348 @default.
- W2066154710 cites W2138086725 @default.
- W2066154710 cites W2142425892 @default.
- W2066154710 cites W2143299724 @default.
- W2066154710 cites W2143516773 @default.
- W2066154710 cites W2145169631 @default.
- W2066154710 cites W2152826865 @default.
- W2066154710 cites W2154791445 @default.
- W2066154710 cites W2157898655 @default.
- W2066154710 cites W2159589665 @default.
- W2066154710 cites W2160411867 @default.
- W2066154710 cites W2161567010 @default.
- W2066154710 cites W2163998463 @default.
- W2066154710 cites W2164877691 @default.
- W2066154710 cites W2169527406 @default.
- W2066154710 cites W2171490473 @default.
- W2066154710 cites W2171675680 @default.
- W2066154710 cites W2296770417 @default.
- W2066154710 cites W2520636672 @default.
- W2066154710 cites W2534114659 @default.
- W2066154710 cites W2546306578 @default.
- W2066154710 cites W2548995987 @default.
- W2066154710 cites W2990736435 @default.
- W2066154710 doi "https://doi.org/10.1109/tpami.2012.262" @default.
- W2066154710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23681993" @default.
- W2066154710 hasPublicationYear "2013" @default.
- W2066154710 type Work @default.
- W2066154710 sameAs 2066154710 @default.
- W2066154710 citedByCount "3" @default.
- W2066154710 countsByYear W20661547102016 @default.
- W2066154710 countsByYear W20661547102017 @default.
- W2066154710 countsByYear W20661547102019 @default.
- W2066154710 crossrefType "journal-article" @default.
- W2066154710 hasAuthorship W2066154710A5052175239 @default.
- W2066154710 hasBestOaLocation W20661547102 @default.
- W2066154710 hasConcept C119857082 @default.
- W2066154710 hasConcept C129641003 @default.
- W2066154710 hasConcept C131979681 @default.
- W2066154710 hasConcept C153180895 @default.
- W2066154710 hasConcept C154945302 @default.
- W2066154710 hasConcept C167966045 @default.
- W2066154710 hasConcept C186644900 @default.
- W2066154710 hasConcept C23224414 @default.
- W2066154710 hasConcept C2776214188 @default.
- W2066154710 hasConcept C2781238097 @default.
- W2066154710 hasConcept C31972630 @default.
- W2066154710 hasConcept C39890363 @default.
- W2066154710 hasConcept C41008148 @default.
- W2066154710 hasConcept C64876066 @default.
- W2066154710 hasConcept C89600930 @default.
- W2066154710 hasConceptScore W2066154710C119857082 @default.
- W2066154710 hasConceptScore W2066154710C129641003 @default.
- W2066154710 hasConceptScore W2066154710C131979681 @default.
- W2066154710 hasConceptScore W2066154710C153180895 @default.
- W2066154710 hasConceptScore W2066154710C154945302 @default.
- W2066154710 hasConceptScore W2066154710C167966045 @default.
- W2066154710 hasConceptScore W2066154710C186644900 @default.
- W2066154710 hasConceptScore W2066154710C23224414 @default.
- W2066154710 hasConceptScore W2066154710C2776214188 @default.
- W2066154710 hasConceptScore W2066154710C2781238097 @default.
- W2066154710 hasConceptScore W2066154710C31972630 @default.
- W2066154710 hasConceptScore W2066154710C39890363 @default.
- W2066154710 hasConceptScore W2066154710C41008148 @default.
- W2066154710 hasConceptScore W2066154710C64876066 @default.
- W2066154710 hasConceptScore W2066154710C89600930 @default.
- W2066154710 hasIssue "7" @default.
- W2066154710 hasLocation W20661547101 @default.
- W2066154710 hasLocation W20661547102 @default.
- W2066154710 hasLocation W20661547103 @default.