Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066202262> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2066202262 endingPage "353" @default.
- W2066202262 startingPage "339" @default.
- W2066202262 abstract "Abstract Process data are the most important information in all aspects of plant monitoring and control applications. These data, stemming from instruments, carry the necessary information that assists plant operations. One of the common problems of process instrument readings is their deviation from true values due to instrument bias or systematic error. Detection of change points in process data is the first step for a more insightful analysis of hidden factors affecting the process. In this paper, both Bayesian and Expectation and Maximization (EM) methods are considered for change point detection problem of multivariate data with both single and multiple changes. The performance of EM is compared with the Bayesian approach. Simulation results show superiority of EM in the case of improper selection of priors while the Bayesian approach has less computation demand. The proposed algorithms are evaluated through several examples, two from simulated random data and one from a CSTR problem. It is also verified through an experimental study of a hybrid tank system." @default.
- W2066202262 created "2016-06-24" @default.
- W2066202262 creator A5039323334 @default.
- W2066202262 creator A5071540194 @default.
- W2066202262 date "2014-01-01" @default.
- W2066202262 modified "2023-09-30" @default.
- W2066202262 title "Bayesian and Expectation Maximization methods for multivariate change point detection" @default.
- W2066202262 cites W124208030 @default.
- W2066202262 cites W1496116023 @default.
- W2066202262 cites W1963566461 @default.
- W2066202262 cites W1975370607 @default.
- W2066202262 cites W1983570220 @default.
- W2066202262 cites W1984526963 @default.
- W2066202262 cites W1990625770 @default.
- W2066202262 cites W1995884653 @default.
- W2066202262 cites W2003644411 @default.
- W2066202262 cites W2049862353 @default.
- W2066202262 cites W2060924918 @default.
- W2066202262 cites W2092740467 @default.
- W2066202262 cites W2165577558 @default.
- W2066202262 cites W2165853647 @default.
- W2066202262 cites W2166038583 @default.
- W2066202262 cites W2169289098 @default.
- W2066202262 cites W2171304305 @default.
- W2066202262 cites W2172697690 @default.
- W2066202262 cites W2317325502 @default.
- W2066202262 doi "https://doi.org/10.1016/j.compchemeng.2013.09.012" @default.
- W2066202262 hasPublicationYear "2014" @default.
- W2066202262 type Work @default.
- W2066202262 sameAs 2066202262 @default.
- W2066202262 citedByCount "16" @default.
- W2066202262 countsByYear W20662022622014 @default.
- W2066202262 countsByYear W20662022622015 @default.
- W2066202262 countsByYear W20662022622016 @default.
- W2066202262 countsByYear W20662022622017 @default.
- W2066202262 countsByYear W20662022622018 @default.
- W2066202262 countsByYear W20662022622019 @default.
- W2066202262 countsByYear W20662022622021 @default.
- W2066202262 countsByYear W20662022622022 @default.
- W2066202262 crossrefType "journal-article" @default.
- W2066202262 hasAuthorship W2066202262A5039323334 @default.
- W2066202262 hasAuthorship W2066202262A5071540194 @default.
- W2066202262 hasConcept C105795698 @default.
- W2066202262 hasConcept C107673813 @default.
- W2066202262 hasConcept C126255220 @default.
- W2066202262 hasConcept C149782125 @default.
- W2066202262 hasConcept C154945302 @default.
- W2066202262 hasConcept C161584116 @default.
- W2066202262 hasConcept C182081679 @default.
- W2066202262 hasConcept C203595873 @default.
- W2066202262 hasConcept C2524010 @default.
- W2066202262 hasConcept C2776330181 @default.
- W2066202262 hasConcept C28719098 @default.
- W2066202262 hasConcept C33923547 @default.
- W2066202262 hasConcept C38180746 @default.
- W2066202262 hasConcept C41008148 @default.
- W2066202262 hasConcept C49781872 @default.
- W2066202262 hasConceptScore W2066202262C105795698 @default.
- W2066202262 hasConceptScore W2066202262C107673813 @default.
- W2066202262 hasConceptScore W2066202262C126255220 @default.
- W2066202262 hasConceptScore W2066202262C149782125 @default.
- W2066202262 hasConceptScore W2066202262C154945302 @default.
- W2066202262 hasConceptScore W2066202262C161584116 @default.
- W2066202262 hasConceptScore W2066202262C182081679 @default.
- W2066202262 hasConceptScore W2066202262C203595873 @default.
- W2066202262 hasConceptScore W2066202262C2524010 @default.
- W2066202262 hasConceptScore W2066202262C2776330181 @default.
- W2066202262 hasConceptScore W2066202262C28719098 @default.
- W2066202262 hasConceptScore W2066202262C33923547 @default.
- W2066202262 hasConceptScore W2066202262C38180746 @default.
- W2066202262 hasConceptScore W2066202262C41008148 @default.
- W2066202262 hasConceptScore W2066202262C49781872 @default.
- W2066202262 hasLocation W20662022621 @default.
- W2066202262 hasOpenAccess W2066202262 @default.
- W2066202262 hasPrimaryLocation W20662022621 @default.
- W2066202262 hasRelatedWork W1985991861 @default.
- W2066202262 hasRelatedWork W2119420496 @default.
- W2066202262 hasRelatedWork W2137983966 @default.
- W2066202262 hasRelatedWork W2366892787 @default.
- W2066202262 hasRelatedWork W2622157825 @default.
- W2066202262 hasRelatedWork W3122021489 @default.
- W2066202262 hasRelatedWork W4220961233 @default.
- W2066202262 hasRelatedWork W4255876030 @default.
- W2066202262 hasRelatedWork W4255920913 @default.
- W2066202262 hasRelatedWork W766232736 @default.
- W2066202262 hasVolume "60" @default.
- W2066202262 isParatext "false" @default.
- W2066202262 isRetracted "false" @default.
- W2066202262 magId "2066202262" @default.
- W2066202262 workType "article" @default.