Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066210005> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2066210005 abstract "Abstract Secondary recovery performance of most oil reservoirs is impacted by formation heterogeneity. Therefore, accurate description of the formation attributes is necessary for appraising the economic success of the secondary recovery operations in a complex reservoir. Porosity and permeability distributions are the key formation attributes, which are required for realistic simulation of the secondary recovery performance. The permeability and porosity are usually determined from the analysis of the core samples. Generally, core samples are only available from limited number of wells in the reservoir because of the expenses associated with obtaining and analyzing the core samples. At the same time, geophysical logs are commonly run in most of the wells in the reservoir. Well log data are then utilized to identify the productive intervals and to estimate the formation porosity. A correlation between core-derived permeability and log-derived porosity is often developed and utilized for permeability prediction. However, a reliable correlation between permeability and porosity generally cannot be established in heterogeneous formations. This is mainly due to presence of multiple Flow Units within the formation. The Flow Unit is defined according to geological and petrophysical properties that influence the flow of fluids. Prediction of Flow Units is a difficult and complex problem because typically the available information from cores is inadequate. The use of well log data to identify the Flow Units and predict permeability distribution therefore, represent a significant technical as well as economic advantage. In this study, several artificial neural networks were successfully developed to predict the Flow Units, permeability and porosity from the available well log data. The study was performed in an oil filed located in West Virginia. Well log data and core analysis results from seven wells in this field were utilized to train and test the neural networks. The results of the networks’ prediction in conjunction with the relevant secondary recovery data were then utilized to simulate the secondary recovery performance. The simulation results indicated that the neural network predications significantly improved the simulation of the secondary recovery performance." @default.
- W2066210005 created "2016-06-24" @default.
- W2066210005 creator A5017140404 @default.
- W2066210005 creator A5045070846 @default.
- W2066210005 creator A5070047038 @default.
- W2066210005 creator A5091173321 @default.
- W2066210005 date "2000-10-17" @default.
- W2066210005 modified "2023-10-18" @default.
- W2066210005 title "Improving the Simulation of Waterflood Performance With the Use of Neural Networks" @default.
- W2066210005 cites W1986517446 @default.
- W2066210005 cites W2018477013 @default.
- W2066210005 cites W2030855446 @default.
- W2066210005 doi "https://doi.org/10.2118/65630-ms" @default.
- W2066210005 hasPublicationYear "2000" @default.
- W2066210005 type Work @default.
- W2066210005 sameAs 2066210005 @default.
- W2066210005 citedByCount "15" @default.
- W2066210005 countsByYear W20662100052012 @default.
- W2066210005 countsByYear W20662100052013 @default.
- W2066210005 countsByYear W20662100052014 @default.
- W2066210005 countsByYear W20662100052015 @default.
- W2066210005 countsByYear W20662100052016 @default.
- W2066210005 countsByYear W20662100052019 @default.
- W2066210005 crossrefType "proceedings-article" @default.
- W2066210005 hasAuthorship W2066210005A5017140404 @default.
- W2066210005 hasAuthorship W2066210005A5045070846 @default.
- W2066210005 hasAuthorship W2066210005A5070047038 @default.
- W2066210005 hasAuthorship W2066210005A5091173321 @default.
- W2066210005 hasConcept C113215200 @default.
- W2066210005 hasConcept C120882062 @default.
- W2066210005 hasConcept C127313418 @default.
- W2066210005 hasConcept C14641988 @default.
- W2066210005 hasConcept C151730666 @default.
- W2066210005 hasConcept C154945302 @default.
- W2066210005 hasConcept C159390177 @default.
- W2066210005 hasConcept C185592680 @default.
- W2066210005 hasConcept C187320778 @default.
- W2066210005 hasConcept C2524010 @default.
- W2066210005 hasConcept C2778668878 @default.
- W2066210005 hasConcept C2780927383 @default.
- W2066210005 hasConcept C33923547 @default.
- W2066210005 hasConcept C35817400 @default.
- W2066210005 hasConcept C38349280 @default.
- W2066210005 hasConcept C41008148 @default.
- W2066210005 hasConcept C41625074 @default.
- W2066210005 hasConcept C46293882 @default.
- W2066210005 hasConcept C50644808 @default.
- W2066210005 hasConcept C548895740 @default.
- W2066210005 hasConcept C55493867 @default.
- W2066210005 hasConcept C6648577 @default.
- W2066210005 hasConcept C78762247 @default.
- W2066210005 hasConceptScore W2066210005C113215200 @default.
- W2066210005 hasConceptScore W2066210005C120882062 @default.
- W2066210005 hasConceptScore W2066210005C127313418 @default.
- W2066210005 hasConceptScore W2066210005C14641988 @default.
- W2066210005 hasConceptScore W2066210005C151730666 @default.
- W2066210005 hasConceptScore W2066210005C154945302 @default.
- W2066210005 hasConceptScore W2066210005C159390177 @default.
- W2066210005 hasConceptScore W2066210005C185592680 @default.
- W2066210005 hasConceptScore W2066210005C187320778 @default.
- W2066210005 hasConceptScore W2066210005C2524010 @default.
- W2066210005 hasConceptScore W2066210005C2778668878 @default.
- W2066210005 hasConceptScore W2066210005C2780927383 @default.
- W2066210005 hasConceptScore W2066210005C33923547 @default.
- W2066210005 hasConceptScore W2066210005C35817400 @default.
- W2066210005 hasConceptScore W2066210005C38349280 @default.
- W2066210005 hasConceptScore W2066210005C41008148 @default.
- W2066210005 hasConceptScore W2066210005C41625074 @default.
- W2066210005 hasConceptScore W2066210005C46293882 @default.
- W2066210005 hasConceptScore W2066210005C50644808 @default.
- W2066210005 hasConceptScore W2066210005C548895740 @default.
- W2066210005 hasConceptScore W2066210005C55493867 @default.
- W2066210005 hasConceptScore W2066210005C6648577 @default.
- W2066210005 hasConceptScore W2066210005C78762247 @default.
- W2066210005 hasLocation W20662100051 @default.
- W2066210005 hasOpenAccess W2066210005 @default.
- W2066210005 hasPrimaryLocation W20662100051 @default.
- W2066210005 hasRelatedWork W115829710 @default.
- W2066210005 hasRelatedWork W1522741472 @default.
- W2066210005 hasRelatedWork W2006316273 @default.
- W2066210005 hasRelatedWork W2031363943 @default.
- W2066210005 hasRelatedWork W2066210005 @default.
- W2066210005 hasRelatedWork W2083461136 @default.
- W2066210005 hasRelatedWork W2607175710 @default.
- W2066210005 hasRelatedWork W2769120627 @default.
- W2066210005 hasRelatedWork W2960115742 @default.
- W2066210005 hasRelatedWork W2101390618 @default.
- W2066210005 isParatext "false" @default.
- W2066210005 isRetracted "false" @default.
- W2066210005 magId "2066210005" @default.
- W2066210005 workType "article" @default.