Matches in SemOpenAlex for { <https://semopenalex.org/work/W2066244579> ?p ?o ?g. }
- W2066244579 endingPage "398" @default.
- W2066244579 startingPage "379" @default.
- W2066244579 abstract "Purpose – The purpose of this paper is to address the practically important problem of the load dependence of transverse vibrations for helical springs. At the beginning, the author develops the equations for transverse vibrations of the axially loaded helical springs. The method is based on the concept of an equivalent column. Second, the author reveals the effect of axial load on the fundamental frequency of transverse vibrations and derive the explicit formulas for this frequency. The fundamental natural frequency of the transverse vibrations of the spring depends on the variable length of the spring. The reduction of frequency with the load is demonstrated. Finally, when the frequency nullifies, the side buckling spring occurs. Design/methodology/approach – Helical springs constitute an integral part of many mechanical systems. A coil spring is a special form of spatially curved column. The center of each cross-section is located on a helix. The helix is a curve that winds around with a constant slope of the surface of a cylinder. An exact stability analysis based on the theory of spatially curved bars is complicated and difficult for further applications. Hence, in most engineering applications a concept of an equivalent column is introduced. The spring is substituted for the simplification of the basic equations by an equivalent column. Such a column must account for compressibility of axis and shear effects. The transverse vibration is represented by a differential equation of fourth order in place and second order in time. The solution of the undamped model equation could be obtained by separation of variables. The fundamental natural frequency of the transverse vibrations depends on the current length of the spring. Natural frequency is the function of the deflection and slenderness ratio. Is the fundamental natural frequency of transverse oscillations nullifies, the lateral buckling of the spring with the natural form occurs. The mode shape corresponds to the buckling of the spring with moment-free, simply supported ends. The mode corresponds to the buckling of the spring with clamped ends. The author finds the critical spring compression. Findings – Buckling refers to the loss of stability up to the sudden and violent failure of seed straight bars or beams under the action of pressure forces, whose line of action is the column axis. The known results for the buckling of axially overloaded coil springs were found using the static stability criterion. The author uses an alternative approach method for studying the stability of the spring. This method is based on dynamic equations. In this paper, the author derives the equations for transverse vibrations of the pressure-loaded coil springs. The fundamental natural frequency of the transverse vibrations of the column is proved to be the certain function of the axial force, as well as the variable length of the spring. Is the fundamental natural frequency of transverse oscillations turns to be to zero, is the lateral buckling of the spring occurs. Research limitations/implications – The spring is substituted for the simplification of the basic equations by an equivalent column. Such a column must account for compressibility of axis and shear effects. The more accurate model is based on the equations of motion of loaded helical Timoshenko beams. The dimensionless for beams of circular cross-section and the number of parameters governing the problem is reduced to four (helix angle, helix index, Poisson coefficient, and axial strain) is to be derived. Unfortunately, that for the spatial beam models only numerical results could be obtained. Practical implications – The closed form analytical formulas for fundamental natural frequency of the transverse vibrations of the column as function of the axial force, as well as the variable length of the spring are derived. The practically important formulas for lateral buckling of the spring are obtained. Originality/value – In this paper, the author derives the new equations for transverse vibrations of the pressure-loaded coil springs. The author demonstrates that the fundamental natural frequency of the transverse vibrations of the column is the function of the axial force. For study of the stability of the spring the author uses an alternative approach method. This method is based on dynamic equations. The new, original expressions for lateral buckling of the spring are also obtained." @default.
- W2066244579 created "2016-06-24" @default.
- W2066244579 creator A5007778375 @default.
- W2066244579 date "2014-10-07" @default.
- W2066244579 modified "2023-10-18" @default.
- W2066244579 title "Effect of static axial compression on the natural frequencies of helical springs" @default.
- W2066244579 cites W106893308 @default.
- W2066244579 cites W143146494 @default.
- W2066244579 cites W1967757863 @default.
- W2066244579 cites W1969219493 @default.
- W2066244579 cites W1972484766 @default.
- W2066244579 cites W1984151231 @default.
- W2066244579 cites W1994362146 @default.
- W2066244579 cites W1994585232 @default.
- W2066244579 cites W2002386843 @default.
- W2066244579 cites W2003784876 @default.
- W2066244579 cites W2007469480 @default.
- W2066244579 cites W2007696382 @default.
- W2066244579 cites W2025754530 @default.
- W2066244579 cites W2029048984 @default.
- W2066244579 cites W2045516199 @default.
- W2066244579 cites W2046564713 @default.
- W2066244579 cites W2047256418 @default.
- W2066244579 cites W2051434691 @default.
- W2066244579 cites W2052121659 @default.
- W2066244579 cites W2053176926 @default.
- W2066244579 cites W2062407284 @default.
- W2066244579 cites W2083943199 @default.
- W2066244579 cites W2100012579 @default.
- W2066244579 cites W2106114036 @default.
- W2066244579 cites W2108150828 @default.
- W2066244579 cites W2133208596 @default.
- W2066244579 cites W2136587903 @default.
- W2066244579 cites W2147330235 @default.
- W2066244579 cites W2171472644 @default.
- W2066244579 cites W2997854644 @default.
- W2066244579 cites W3214312500 @default.
- W2066244579 cites W748294221 @default.
- W2066244579 doi "https://doi.org/10.1108/mmms-12-2013-0078" @default.
- W2066244579 hasPublicationYear "2014" @default.
- W2066244579 type Work @default.
- W2066244579 sameAs 2066244579 @default.
- W2066244579 citedByCount "10" @default.
- W2066244579 countsByYear W20662445792015 @default.
- W2066244579 countsByYear W20662445792016 @default.
- W2066244579 countsByYear W20662445792017 @default.
- W2066244579 countsByYear W20662445792019 @default.
- W2066244579 countsByYear W20662445792021 @default.
- W2066244579 countsByYear W20662445792022 @default.
- W2066244579 countsByYear W20662445792023 @default.
- W2066244579 crossrefType "journal-article" @default.
- W2066244579 hasAuthorship W2066244579A5007778375 @default.
- W2066244579 hasConcept C10513763 @default.
- W2066244579 hasConcept C121332964 @default.
- W2066244579 hasConcept C127413603 @default.
- W2066244579 hasConcept C134306372 @default.
- W2066244579 hasConcept C154954056 @default.
- W2066244579 hasConcept C182664415 @default.
- W2066244579 hasConcept C198394728 @default.
- W2066244579 hasConcept C24890656 @default.
- W2066244579 hasConcept C2524010 @default.
- W2066244579 hasConcept C2778712887 @default.
- W2066244579 hasConcept C33923547 @default.
- W2066244579 hasConcept C35377427 @default.
- W2066244579 hasConcept C57879066 @default.
- W2066244579 hasConcept C66938386 @default.
- W2066244579 hasConcept C78736273 @default.
- W2066244579 hasConcept C84655787 @default.
- W2066244579 hasConcept C85476182 @default.
- W2066244579 hasConceptScore W2066244579C10513763 @default.
- W2066244579 hasConceptScore W2066244579C121332964 @default.
- W2066244579 hasConceptScore W2066244579C127413603 @default.
- W2066244579 hasConceptScore W2066244579C134306372 @default.
- W2066244579 hasConceptScore W2066244579C154954056 @default.
- W2066244579 hasConceptScore W2066244579C182664415 @default.
- W2066244579 hasConceptScore W2066244579C198394728 @default.
- W2066244579 hasConceptScore W2066244579C24890656 @default.
- W2066244579 hasConceptScore W2066244579C2524010 @default.
- W2066244579 hasConceptScore W2066244579C2778712887 @default.
- W2066244579 hasConceptScore W2066244579C33923547 @default.
- W2066244579 hasConceptScore W2066244579C35377427 @default.
- W2066244579 hasConceptScore W2066244579C57879066 @default.
- W2066244579 hasConceptScore W2066244579C66938386 @default.
- W2066244579 hasConceptScore W2066244579C78736273 @default.
- W2066244579 hasConceptScore W2066244579C84655787 @default.
- W2066244579 hasConceptScore W2066244579C85476182 @default.
- W2066244579 hasIssue "3" @default.
- W2066244579 hasLocation W20662445791 @default.
- W2066244579 hasOpenAccess W2066244579 @default.
- W2066244579 hasPrimaryLocation W20662445791 @default.
- W2066244579 hasRelatedWork W1566089303 @default.
- W2066244579 hasRelatedWork W1991761621 @default.
- W2066244579 hasRelatedWork W1997228479 @default.
- W2066244579 hasRelatedWork W2003711206 @default.
- W2066244579 hasRelatedWork W2027822884 @default.
- W2066244579 hasRelatedWork W2066244579 @default.
- W2066244579 hasRelatedWork W2070469732 @default.
- W2066244579 hasRelatedWork W2387572455 @default.